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What's in a Title?

» Dynamics of (Stellar)-Disks around Massive Central Bodies
[with Mher Kazandjian (U. Leiden), S. Sridhar(RRI, India)].

» Maximum Entropy Equilibria of (Stellar)-Disks around
Massive Central Bodies [with Scott Tremaine (IAS,
Princeton)].

» Non-equlibrium Thermodynamics of Stellar Clusters
around Massive Central Bodies [with S. Sridhar (RRI,
India)].



Astrophysical Motivation

» Supermassive Black Holes in Centers of
Galaxies:10% — 10'° M,

» Nuclear Stellar Clusters: History of Mergers, Black Holes
Included

» Close by: Puzzling Galactic Center, Double Nucleus of
M31



The Galaxy’s Youthful Nucleus: A Paradox

» SMBH: M, ~ 4.2 x 10°M,
(rsphere ~ 2 pc) [Yelda et. al 2011]

» Kinematically Hot ’Disk(s)’ of
Young WR, O and B stars:
3 — 10Myrs,
Mstars ~ 10% — 10°M,
0.032 < r < 0.15 pc [Paumard et.
al. 2006, Bartko et. al. 2009,
Yelda et. al. 2014]

» Mean eccentricity ~ 0.27 [Yelda
et. al 2014]



Two CR Disks, or
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[Credit: Bartko et. al, 2009]



A Single Thick Disk?
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[Credit: Yelda et. al, 2014]



The Triple Nucleus of M31: Embarassment of Riches

> SMBH: M, ~ 1.2 x 108M,,
2005]

» Double Nucleus (P1-P2), Old
stars: M ~ 2 x 10"Mg,

» Disk of A Stars (P3):
MDisk =nrv 4200M®, r<t pC,
~ 100 — 200 Myrs

[Credit: Bender et. al, 2005]



Pertinent Observations and Associated Puzzles

» Milky Way’s Nucleus: Hot Disk(s) of Young Stars: In Situ
Formation? If so how do you excite them? If not, how do
you transport them in time?

» MB31’s Triple Nucleus: Origin of the double nucleus? If
aligned Keplerian orbits, how do you get them to align?
What confines the inner disk? Any links between P1-P2
and P3?



Double Nucleus of M31




M31’s Double Nucleus: Tremaine’s Model

2. (a) Contour map of rmﬂ ﬂlﬂebﬂghlﬂ‘\ s of the best-fit model. The
Conon e s 0% . el s pois 10° coutrlckse
fror

ich coincides with the back hole P2
marked by 12)
e shown o s ) Deconoled V-t s i ghinee o

tours o the nucleus of M31 (Fig. 2 of L93). The orientation and origin are
the same as in (s) bu the contour interval of 072 s larger and a larger area

[Credit: Tremaine, 1995 (see Peiris and Tremaine, 2003]



Stellar Black Hole Nuclei: Sphere of Influence

In the sphere of influence, rspnere ~ &%=, a hierarchy of time
Sca|eS torbh‘ < tsecu/ar < trr < tre/ax Whel’e

N|—

3 . L
> tomit ~ (gp;)” » Keplerian orbital time;
> lsec ~ %torbit, precessional time;

> by~ %to,b,-t; resonant relaxation time;

2 . .
> trelax ~ %forbm two-body relaxation time;

Plus: External Perturber, Dynamical Friction, General
Relativistic Corrections.



Sphere of Influence: Stellar Dynamical Processes

» Black-Hole Dominated, Nearly-Keplerian Motion: Orbit
averaged into (Gaussian) Wires, with Constant Keplerian
Energy [Sridhar and Touma (1999)]

» Resonant Relaxation of Gaussian Wires Dominates Two
Body Relaxation [Rauch and Tremaine (1996)]

» Secular Instabilities of Disks and Spheres [Touma (2002,
Tremaine (2005), Polyachenko et al. (2007)]

» Kozai-Lidov instability, driven by massive distant
perturbers, sculpting eccentricity inclination distributions
[e.g. Blaes et. al. (2003), Lockmann et. al. (2008),
Chang(2008)]



Progress Report

» Counter-Rotating Nearly-Keplerian stellar disks are
unstable: They evolve into lopsided uniformly precessing
configurations [Touma (MNRAS, 2002), Sridhar and Saini
(MNRAS, 2009), Touma and Sridhar (MNRAS, 2012),
Kazandjian and Touma (MNRAS, 2013)]

» Microcanonical Thermal equilibria of narrow, ring-like,
disks are, more often than not, lopsided [Touma and
Tremaine (J. Phys. A, 2014)];

» First-Principles theory of "Resonant Relaxation" lays bare
the kinetics of collisional relaxation onto thermal equilibria
[Sridhar and Touma (MNRAS, 2016)]



Self-Consistent, Collisionless Dynamics

Evolution governed by CBE-Poisson system of equations:

of  of of
a Vo Vo nT0

where: (Z)(I',t) = (Z)se"(r, t) + ¢ext(r, t),

bseir(r, ) G/d3 rd3v /w

and ¢ex(r,t) = _G;M' + ¢c(r,t). Note:

» Black-Hole Dominated, Nearly-Keplerian Motion: Orbits
averaged into (Gaussian) Rings

» Consequence of Averaging: L = v/ GM,a conserved.



Numerical Clusters

» Black Hole, 108 M., Dominating Disk with 10" M,
perturbed by Counter-Rotating Disk with 108 M ;

» Disk: Kuzmin Disk (ring) Radial Scale of 1pc,
oy ~ 200km/s;

» 5 x 10° Particles, Softening Length: 10~3pc
Particle-Particle, and 10~°pc for Particle-SMBH
interactions;

» Parallel run with Tree Code (Gadget’s Parallel Version),
Errors: 10~* in Energy, and 10~° in Angular Momentum
over 1 Myr, (10 Tprec).



Before and After

0.000 Myr

1.600 Myr




M31’s Nucleus in the Looking Glass:
Modeling P1 and P2




Secular (Orbit Averaged) Dynamics

» Counter-Rotating Disks of Stars around SMBH: N > 1,
Miaisk < M,;

» Black-Hole Dominated, Nearly-Keplerian Motion:
Separation of Scales — Orbits averaged into (Gaussian)
Wires;

» Consequence of Averaging: L = /GM,a conserved; N
Gaussian Wires of equal mass m, and semi-major axis a

» Sense of Rotation s: +1 for prograde and —1 for
retrograde

» Coordinates: e, @, or e = (k, h) = e(cos w, sin w)



2-Wire Potential

» Orbit Averaged Potential:
o(e,e) = —Gm*([r —r'|7") = (Gm?/a)¢(e, €)
» Equal a and up to O(€?, e log e):
p(e, €)= ¢.(e,e)=—4log2/m + (2r) ' log(e — e')?

» Eccentricities can grow quite large: High eccnetricity
expansion, Interpolation over Grid, but results qualitatively
similar, hence stick to Logaritmic interactions



Continuum Limit

» Distribution functions:
n(e)=n.(e)+n_(e) or f(E)="F.(E)+ 7 (E);

» Transform:
ni(e)de = f.(E)dE,

with

dE = dKdH = 1dk dh/\/1 — e2 = 1de/\/1 — €2,

hence

ne(e) = 3f(E)/vV1 — 2.



Wire in Mean Field

Mean Field Potential:

I /
Me)= N/ ee)de_N/fE o(e,e’)dE’.

Particle Equation of Motion:

ar ~SoH ar = Sog With =5

aK OF aH _or Mgk <GM*)1/2



Coupled Gauss Wires

¢:|: = ¢i(e+a e,)



Aligned Counter-Rotating Gauss Wires



"Maximize" Entropy at fixed N, L, and U

» Gibbs’ Microcanonical Ensemble: Ensemble of Particles
sharing same N, L and U;

» Entropy, Measure of Multiplicity:

S= —/[f+(E) log f, (E) + f_(E)log f_(E)] dE

» Maximize S at constant:
N = / e)de = /f
L=m\/GM,a /[n+(e) —n_(e)]v1-—e?

U= }(Gm?/a) / n(e)n(e')o(e, e’) de de’



Thermal Equilibria

» Distribution of prograde and retrograde rings:

f(E) = . (E) + f_(E);

» Entropy:

S=- /[f+(E) log f, (E) + f_(E)log f_(E)] dE

» Maximize S at constant N, L, U.



Themal Equilibria: Integral Form

» Distribution Function of Thermal Equilibria:

P(E) = ’\;exp[ 5ro(e) + s7(1 - E2)]

» Mean Field of Thermal Equilibrium:
V(e) = 204/dE/<Z5(eve') exp[—V(e)] cosh~(1 — E’®),

with E=+v1-+v1-¢e2e/e.



General Book Keeping

Work with dimensionless conserved quantities:
» Dimensionless Angular Momentum:

L _ [dE(1 — E?)exp[-V¥(e)]sinhy(1 — E?)

14

NmyGM,a [ dEexp[-V¥(e)]coshy(1 — E?)

» Dimensionless Energy:

alu [ dEdE' W(e)W(e')¢o(e,€)
G(Nm)? 2 || dE exp[—V(e)] cosh~(1 — E2)]2

u=

with W(e) = exp[—V(e)] cosh~(1 — E?).



Themal Equilibria: The Program

» Solve for Axisymmetric Thermal Equilibria

» Are they thermally stable? Entropy Maxima? Saddle?

» Are they dynamically stable?

» If thermally unstable, what are the global entropy maxima?
» If dynamically unstable, what are the saturated states?

» How do the global entropy maxima relate to saturated
states?



Axisymmetric Equilibria: Formulation

Working with Logarithmic limit of ¢(e, e), Differentiate Potential
Equation to get:

2x
V2Y = exp[—WV(e)] coshyv/1 — e2.
Under axial symmetry
2x
Vv = exp[—V(e)]coshyv/1 — €2,
turns into

d2\ll+1d7\u_ 2a
de2  ede 1_e?

exp[—V(e)]coshyv/ 1 — €2?;



Axisymmetric Thermal Equilibria: Prograde Fraction
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Axisymmetric Thermal Equilibria: Mean Eccentricity
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Axisymmetric Thermal Equilibria: Inverse Temperature
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Axisymmetric Thermal Equilibria: Entropy
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Thermal Instability

Question: Are Axisymmetric Equilibria Thermally Stable?
» Condition for Non-Axisymmetric Perturbations of Equilibria

» Condition for Thermal Instability: When is Entropy
Extremum a Saddle?



Stability of Axisymmetric Thermal Equilibria
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Stability of Axisymmetric Thermal Equilibria
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Thermal Instability: Results

Question: Are Axisymmetric Equilibria Thermally Stable?
» Condition for Non-Axisymmetric Perturbations of Equilibria

» Condition for Thermal Instability: When is Entropy
Extremum a Saddle?



Thermal Instability: Results

Question: Are Axisymmetric Equilibria Thermally Stable?
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» Condition for Thermal Instability: When is Entropy
Extremum a Saddle?

» Axisymmetric Equilibria are Prone to Lopsided, m=1
Deformations, over a Broad Range of Energy and Angular
momenta;



Thermal Instability: Results

Question: Are Axisymmetric Equilibria Thermally Stable?
» Condition for Non-Axisymmetric Perturbations of Equilibria

» Condition for Thermal Instability: When is Entropy
Extremum a Saddle?

» Axisymmetric Equilibria are Prone to Lopsided, m=1
Deformations, over a Broad Range of Energy and Angular
momenta;

» For ¢ < 0.833, critical energy below which equilibria are
thermally unstable — Entropy Maximum is a saddle



Thermal Instability: Results

Question: Are Axisymmetric Equilibria Thermally Stable?

>

Condition for Non-Axisymmetric Perturbations of Equilibria

Condition for Thermal Instability: When is Entropy
Extremum a Saddle?

Axisymmetric Equilibria are Prone to Lopsided, m=1
Deformations, over a Broad Range of Energy and Angular
momenta;

For ¢ < 0.833, critical energy below which equilibria are
thermally unstable — Entropy Maximum is a saddle

Lopsided Equilibria Are Natural Byproduct of Resonant
Relaxation



Axisymmetry

Global Thermal Equilibria:Non

© N @ o~ 0 O
a2 ~— ()

AIyowiwiAsixeuou

-0.5



Global Thermal Equilibria: Mean Eccentricity
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Global Thermal Equilibria: Angular Velocity
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Global Thermal Equilibria: Lopsided Density

u=-0.45 u=-0.633

u=-0.817 u=-1




Global Thermal Equilibria: Lopsided Density




Dynamical Stability



Dynamical Stability

» Linearized Collisionless Boltzmann Equation: All Thermally
Unstable Disks are Dynamically Unstable



Dynamical Stability

» Linearized Collisionless Boltzmann Equation: All Thermally
Unstable Disks are Dynamically Unstable

» Sample Equilibrium Distributions and Simulate Their
Dynamical Evolution



Dynamical Stability
» Linearized Collisionless Boltzmann Equation: All Thermally
Unstable Disks are Dynamically Unstable

» Sample Equilibrium Distributions and Simulate Their
Dynamical Evolution

» Seek the Saturated States of Unstable Configurations



Dynamical Stability

v

Linearized Collisionless Boltzmann Equation: All Thermally
Unstable Disks are Dynamically Unstable

v

Sample Equilibrium Distributions and Simulate Their
Dynamical Evolution

v

Seek the Saturated States of Unstable Configurations

Confront "Collisionless" Saturated states with "Collisional"
Equilibria

v



Road to Saturation:
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Phase-Space around Saturation: ¢ = 0, u = —0.55
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Mean Eccentricity around Saturation
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Dispersion Around the Mean: /¢ = 0.5
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Kinetics: Relaxation to Lopsidedness

» Resonant Relaxation Drives Nearly-Keplerian Disks to
Lopsided Maximum Entropy Equilibria

» Collisionless Dynamical Instability Drives Nearly-Keplerian
Disks to Lopsided Uniformly Precessing Equilibria

» The Full Story Involves the Complementary Action of Both
Collisionless and Collisional Relaxation

» A Theory for Both is Lacking, though End States Can be
"Securely" Characterized



Thermal Equilibria: The Report

>

Axisymmetric Equilibria are Prone to Lopsided, m=1
Deformations, over a Broad Range of Energy and Angular
Momenta.

Resonant Relaxation Drives Nearly-Keplerian Disks to
Lopsided Maximum Entropy Equilibria.

All Thermally Unstable Disks are Dynamically Unstable.

Dynamical Instability Drives Nearly-Keplerian Disks to
Lopsided Uniformly Precessing Equilibria.

The Full Story Involves the Complementary Action of Both
Collisionless and Collisional Relaxation.



The Resolution

» Counter-Rotating Nearly-Keplerian stellar disks are
unstable: They evolve into lopsided uniformly precessing
configurations.

» Microcanonical Thermal equilibria of narrow, ring-like,
disks are, more often than not, lopsided.

» Life cycle of a self-gravitating Keplerian cluster: relaxation
onto instability, then saturation onto relaxation.
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