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What’s in a Title?

I Dynamics of (Stellar)-Disks around Massive Central Bodies
[with Mher Kazandjian (U. Leiden), S. Sridhar(RRI, India)].

I Maximum Entropy Equilibria of (Stellar)-Disks around
Massive Central Bodies [with Scott Tremaine (IAS,
Princeton)].

I Non-equlibrium Thermodynamics of Stellar Clusters
around Massive Central Bodies [with S. Sridhar (RRI,
India)].



Astrophysical Motivation

I Supermassive Black Holes in Centers of
Galaxies:106 − 1010 M�

I Nuclear Stellar Clusters: History of Mergers, Black Holes
Included

I Close by: Puzzling Galactic Center, Double Nucleus of
M31



The Galaxy’s Youthful Nucleus: A Paradox

I SMBH: M• ∼ 4.2× 106M�
(rsphere ' 2 pc) [Yelda et. al 2011]

I Kinematically Hot ’Disk(s)’ of
Young WR, O and B stars:
3− 10Myrs,
Mstars ∼ 104 − 105M�,
0.032 ≤ r ≤ 0.15 pc [Paumard et.
al. 2006, Bartko et. al. 2009,
Yelda et. al. 2014]

I Mean eccentricity ∼ 0.27 [Yelda
et. al 2014]



Two CR Disks, or

[Credit: Bartko et. al, 2009]



A Single Thick Disk?

[Credit: Yelda et. al, 2014]



The Triple Nucleus of M31: Embarassment of Riches

I SMBH: M• ∼ 1.2× 108M�
(rsphere ∼ 16pc) [Bender et. al.
2005]

I Double Nucleus (P1-P2), Old
stars: M ∼ 2× 107M�

I Disk of A Stars (P3):
MDisk =∼ 4200M�, r ≤ 1 pc,
∼ 100− 200 Myrs
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FIG. 7.ÈHST WFPC2 color image of M31 constructed from I-band, V -band and 3000 band PSF-deconvolved images obtained by Lauer et al. (1998).A!
The left brightness peak (with embedded blue star cluster) is P2 ; the right peak is P1. The I- and V -band images were substepped by half of a PC pixel, so the
scale is pixel~1. The 3000 image was not substepped ; we matched it to the I- and V -band images by interpolation.0A.0228 A!

P2 side. It predicts a maximum dispersion of D300 km s~1
at perfect resolution or D242 km s~1 at resolution p* \

slit This agrees adequately with our0A.37 ; width \ 0A.5.
observation of 248 ^ 5 km s~1 at resolution. In any0A.27
case, the modelÏs maximum dispersion is easily changed by
adjusting the BH mass or the disk density near the center.

6.5. Conclusion
We conclude that TremaineÏs nuclear disk model passes

our tests, at least qualitatively. Its main shortcoming is that
it assumes that all of the nuclear orbits are aligned. The
observations show that some of the nucleus is not part
of the P1-P2 alignment ; we interpret this to mean that
some eccentric orbits have phase-mixed around the center.

Tweaking seems required. Better agreement with the low
observed velocity dispersion might be obtained by making
the eccentric orbits more elongated and by pointing them
more nearly at us. But as a proof of concept, the model
works remarkably well. If the nucleus is in equilibrium, then
our detection of asymmetry in the rotation curve and in the

proÐle is essential conÐrmation of the idea that many ofh3the stars revolve around the BH in eccentric and aligned
orbits.

If P1 and P2 are part of the same eccentric disk, then
their stellar populations should be very similar. P1 stars
contribute to P2 when they are near pericenter. P2 also
contains stars that never reach P1, and the nucleus may

[Credit: Bender et. al, 2005]



Pertinent Observations and Associated Puzzles

I Milky Way’s Nucleus: Hot Disk(s) of Young Stars: In Situ
Formation? If so how do you excite them? If not, how do
you transport them in time?

I M31’s Triple Nucleus: Origin of the double nucleus? If
aligned Keplerian orbits, how do you get them to align?
What confines the inner disk? Any links between P1-P2
and P3?



Double Nucleus of M31
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M31’s Double Nucleus: Tremaine’s Model
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[Credit: Tremaine, 1995 (see Peiris and Tremaine, 2003]



Stellar Black Hole Nuclei: Sphere of Influence

In the sphere of influence, rsphere ∼ GM•
σ2 , a hierarchy of time

scales: torbit � tsecular � trr � trelax where:

I torbit ∼ ( r3

GM•
)

1
2 , Keplerian orbital time;

I tsec ∼ M•
Mc

torbit , precessional time;

I trr ∼ M•
m torbit ; resonant relaxation time;

I trelax ∼ M2
•

Nm2 torbit , two-body relaxation time;

Plus: External Perturber, Dynamical Friction, General
Relativistic Corrections.



Sphere of Influence: Stellar Dynamical Processes

I Black-Hole Dominated, Nearly-Keplerian Motion: Orbit
averaged into (Gaussian) Wires, with Constant Keplerian
Energy [Sridhar and Touma (1999)]

I Resonant Relaxation of Gaussian Wires Dominates Two
Body Relaxation [Rauch and Tremaine (1996)]

I Secular Instabilities of Disks and Spheres [Touma (2002,
Tremaine (2005), Polyachenko et al. (2007)]

I Kozai-Lidov instability, driven by massive distant
perturbers, sculpting eccentricity inclination distributions
[e.g. Blaes et. al. (2003), Lockmann et. al. (2008),
Chang(2008)]



Progress Report

I Counter-Rotating Nearly-Keplerian stellar disks are
unstable: They evolve into lopsided uniformly precessing
configurations [Touma (MNRAS, 2002), Sridhar and Saini
(MNRAS, 2009), Touma and Sridhar (MNRAS, 2012),
Kazandjian and Touma (MNRAS, 2013)]

I Microcanonical Thermal equilibria of narrow, ring-like,
disks are, more often than not, lopsided [Touma and
Tremaine (J. Phys. A, 2014)];

I First-Principles theory of "Resonant Relaxation" lays bare
the kinetics of collisional relaxation onto thermal equilibria
[Sridhar and Touma (MNRAS, 2016)]



Self-Consistent, Collisionless Dynamics

Evolution governed by CBE-Poisson system of equations:

∂f
∂t

+ v · ∂f
∂r
−∇φ · ∂f

∂v
= 0,

where: φ(r, t) = φself(r, t) + φext(r, t),

φself (r, t) = −G
∫

d3r′d3v′
f(r′,v′, t)
|r− r′|

and φext (r, t) = −GM•
r + φc(r, t). Note:

I Black-Hole Dominated, Nearly-Keplerian Motion: Orbits
averaged into (Gaussian) Rings

I Consequence of Averaging: L =
√

GM•a conserved.



Numerical Clusters

I Black Hole, 108M�, Dominating Disk with 107M�,
perturbed by Counter-Rotating Disk with 106M�;

I Disk: Kuzmin Disk (ring) Radial Scale of 1pc,
σv ' 200km/s;

I 5× 105 Particles, Softening Length: 10−3pc
Particle-Particle, and 10−5pc for Particle-SMBH
interactions;

I Parallel run with Tree Code (Gadget’s Parallel Version),
Errors: 10−4 in Energy, and 10−5 in Angular Momentum
over 1 Myr, (10Tprec).



Before and After
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M31’s Nucleus in the Looking Glass:
Modeling P1 and P2

4 Mher V. Kazandjian and Jihad R. Touma

Figure 4. Photometry and kinematics of saturated configura-
tions are probed, and a remarkable agreement with the kinemat-
ics of Andromeda’s nucleus is demonstrated. In the top row,
we show the results of photometric and kinematic observations
of our fiducial simulation: a double-peak is evident in the surface
brightness distributiontop [left], with a brighter (P1-like) peak on
the left of the SMBH at the origin, and a fainter (P2-like) peak
on its right; the zero point in the rotation curve top [center]
is shifted towards brighter peak and slower rotation; the peak
velocity dispersion is displaced towards fainter peak and faster
rotation [right]; rotation and LOSVD curves are shown without
(dashed) and with (solid) contributions from the dispersed CR
disk, which contributions introduce a significant asymmetry in
the tails. The best fit (non-aligned) models of Peiris & Tremaine
(2003) (labeled PT03) with no bulge are also displayed as dot-
dashed lines. A Quantitative agreement is demonstrated in the
bottom row, center and right panels, between a dynamically
similar copy of the featured simulation (observed under HST con-
ditions) (solid line) and M31’s kinematics (Bender et al. 2005)
(blue and red dots).

the photometry and kinematics of this nucleus will naturally
display all the significant qualitative features which eccentric
disk models seek to explain (Fig. 4, top row): a double peak
in surface brightness, an asymmetry in the rotation velocity
(with an off-center zero velocity point), and an off-centered
peak in the line of sight velocity dispersion (Bender et al.
2005; Peiris & Tremaine 2003) (hereafter LOSVD). Pushing
our luck, we seek a preliminary quantitative confrontation
of simulation results with observations of M31’s nucleus. In
so doing, we work with a rescaled and dynamically sim-
ilar version of our fiducial experiment (roughly speaking,
we rescale from fiducial simulation length scale ! 1 pc, to
M31 nucleus scale, ! 3 pc). The resulting Model Nucleus
is then observed under HST conditions (Bender et al. 2005;
Peiris & Tremaine 2003) (details in Appendix A). The out-
come of this procedure is then overlaid with M31’s kinemat-
ics (Fig. 4, bottom row). We closely match the observed shift
in the zero-point of rotation curve (x=-0.485 compared to
x=-0.448 pc in observations (Bender et al. 2005) ), the dif-
ference in the peak rotation velocities (v=585 km s−1 com-
pared to v=532 ± 41 km s−1), the magnitude of and shift
in the peak in the LOSVD curve (x=+0.187, σ=+355.7 km
s−1 compared to x=0.298 pc, σ=+373 ± 48 km s−1).

The triaxial cluster of our Model endows its kine-
matics with the marked asymmetry between the tails
of the LOSVD, which is clearly observed in HST data
(Kormendy & Bender 1999; Bender et al. 2005), and which

has proven difficult to recover with eccentric disks alone
(Peiris & Tremaine 2003) (compare PT03 and the “no CR”
curves to the solid curve in the rightmost column of Fig.
4). Recall that this cluster consists of eccentric orbits which
result from the triaxial dispersal of the initially retrograde
cluster (rows b and d of Fig. 1). When superposed over the
more massive lopsided disk, stars in this cluster will leave
their kinematic signature mostly in the outer parts of the nu-
cleus, which is where they linger the most on their eccentric
orbits. That signature is particularly pronounced where the
lopsided prograde disk contributes least, i.e. on the anti-P1
side of the nucleus, hence the resulting asymmetry.

The initial ring-like configuration in our experiment is
clearly deficient in stars in its central region. Hence, we did
not expect for the resulting double nucleus to closely approx-
imate the observed surface brightness profile in that region.
This said, we were pleased to learn that a surface bright-
ness profile, along a slit extending from brighter to fainter
peak, has maxima around 13.3 and 14.2 mag.arcsec−2 re-
spectively, which compare favorably with the 13.2 and 13.57
mag.arcsec−2 , observed by HST.

Last but not least, we note that for the adopted similar-
ity transformation1 the pattern speed of the lopsided mode
scales down from the 19 km s−1 pc−1 of the fiducial nucleus
(Fig. 2, d), to the slower 4.3 km s−1 pc−1 of the Model
Nucleus. At this relatively slow pattern speed, gravitational
perturbations by the Model Nucleus are expected to drive
and confine gas in a disk close to the SMBH (Chang et al.
2007). When fueled by stellar mass loss from the nucleus,
such a disk can regenerate starbursts at a rate which is con-
sistent with the observed compact cluster of early type stars
(P3) around M31’s SMBH (Bender et al. 2005; Chang et al.
2007). Thus, M31’s P3 could very well be a direct conse-
quence of P1 and P2 in our dynamical Model.

4 DISCUSSION

Andromeda’s kinematics shows a marked asymmetry be-
tween the tails of its LOSVD which is clearly unaccounted
for in Keplerian disk models, and appears to be cleanly re-
solved by combining an eccentric disk with a triaxial cluster
of highly eccentric orbits. To be sure, thorough modeling
is called for before we can rigorously quantify the improve-
ments of a disk-cluster combination over the thick eccen-
tric disk model of Peiris & Tremaine (2003). Still, we find
it remarkable that this combination achieves, with minimal
probing, the level of qualitative and quantitative agreement
described above, and to see it emerge as a natural end prod-
uct of our process can only strengthen the case for CR stim-
uli of double nuclei (Lauer et al. 2005). That case is made
stronger when one learns that a rich variety of CR configura-
tions are equally prone to developing lopsidedness (details in
Appendix B.). Experiments with CR point masses suggest
that a cluster, initially on a circular trajectory, can drive
a coplanar disk unstable provided its orbital radius is less
than a critical radius (which is roughly equal to twice the

1 In this transformation, time is rescaled by s
3
2 , whenever length

is rescaled by s. The adopted s ! 2.7 accounts for the slower
precession rate of the Model Nucleus.



Secular (Orbit Averaged) Dynamics

I Counter-Rotating Disks of Stars around SMBH: N � 1,
Mdisk � M∗;

I Black-Hole Dominated, Nearly-Keplerian Motion:
Separation of Scales→ Orbits averaged into (Gaussian)
Wires;

I Consequence of Averaging: L =
√

GM•a conserved; N
Gaussian Wires of equal mass m, and semi-major axis a

I Sense of Rotation s: +1 for prograde and −1 for
retrograde

I Coordinates: e, $, or e ≡ (k ,h) ≡ e(cos$, sin$)



2-Wire Potential

I Orbit Averaged Potential:

Φ(e,e′) = −Gm2〈|r− r′|−1〉 ≡ (Gm2/a)φ(e,e′)

I Equal a and up to O(e2,e2 log e):

φ(e,e′) ≡ φL(e,e′) ≡ −4 log 2/π + (2π)−1 log(e− e′)2

I Eccentricities can grow quite large: High eccnetricity
expansion, Interpolation over Grid, but results qualitatively
similar, hence stick to Logaritmic interactions



Continuum Limit

I Distribution functions:

n(e) ⌘ n+(e) + n�(e) or f (E) = f+(E) + f�(E);

I Transform:
n±(e)de = f±(E)dE,

with

dE = dKdH = 1
2dk dh/

p
1 � e2 = 1

2de/
p

1 � e2,

hence
n±(e) = 1

2 f±(E)/
p

1 � e2.



Wire in Mean Field

Mean Field Potential:

�(e) =
1
N

Z
n(e0)�(e, e0)de0 =

1
N

Z
f (E0)�(e, e0)dE0.

Particle Equation of Motion:

dK
d⌧

= s
@�

@H
,

dH
d⌧

= �s
@�

@K
with ⌧ =

Mdisk

2M⇤

✓
GM⇤
a3

◆1/2
t .



Coupled Gauss Wires

e−

e+

φ± = φ±(e+, e−)



Aligned Counter-Rotating Gauss Wires



"Maximize" Entropy at fixed N, L, and U

I Gibbs’ Microcanonical Ensemble: Ensemble of Particles
sharing same N, L and U;

I Entropy, Measure of Multiplicity:

S = �
Z
[f+(E) log f+(E) + f�(E) log f�(E)] dE

I Maximize S at constant:

N ⌘
Z

n(e) de =

Z
f (E) dE

L = m
p

GM?a
Z
[n+(e)� n�(e)]

p
1 � e2

U = 1
2(Gm2/a)

Z
n(e)n(e0)�(e, e0) de de0



Thermal Equilibria

I Distribution of prograde and retrograde rings:

f (E) = f+(E) + f−(E);

I Entropy:

S = −
∫

[f+(E) log f+(E) + f−(E) log f−(E)] dE

I Maximize S at constant N,L,U.



Themal Equilibria: Integral Form

I Distribution Function of Thermal Equilibria:

f 0
±(E) =

Nα
β

exp[−βΓ0(e) + sγ(1− E2)]

I Mean Field of Thermal Equilibrium:

Ψ(e) = 2α
∫

dE′φ(e,e′) exp[−Ψ(e′)] cosh γ(1− E ′2),

with E =
√

1−
√

1− e2 e/e.



General Book Keeping

Work with dimensionless conserved quantities:
I Dimensionless Angular Momentum:

` ⌘ L
Nm

p
GM?a

=

R
dE (1 � E2) exp[� (e)] sinh �(1 � E2)R

dE exp[� (e)] cosh �(1 � E2)

I Dimensionless Energy:

u ⌘ aU
G(Nm)2 =

R
dE dE0 W (e)W (e0)�(e, e0)

2
⇥R

dE exp[� (e)] cosh �(1 � E2)
⇤2

with W (e) = exp[� (e)] cosh �(1 � E2).



Themal Equilibria: The Program

I Solve for Axisymmetric Thermal Equilibria

I Are they thermally stable? Entropy Maxima? Saddle?

I Are they dynamically stable?

I If thermally unstable, what are the global entropy maxima?

I If dynamically unstable, what are the saturated states?

I How do the global entropy maxima relate to saturated
states?



Axisymmetric Equilibria: Formulation

Working with Logarithmic limit of �(e, e0), Differentiate Potential
Equation to get:

r2
e =

2↵p
1 � e2

exp[� (e)] cosh �
p

1 � e2.

Under axial symmetry

r2
e =

2↵p
1 � e2

exp[� (e)] cosh �
p

1 � e2,

turns into

d2 

de2 +
1
e

d 
de

=
2↵p

1 � e2
exp[� (e)] cosh �

p
1 � e2;



Axisymmetric Thermal Equilibria: Prograde Fraction



Axisymmetric Thermal Equilibria: Mean Eccentricity



Axisymmetric Thermal Equilibria: Inverse Temperature



Axisymmetric Thermal Equilibria: Entropy



Thermal Instability

Question: Are Axisymmetric Equilibria Thermally Stable?

I Condition for Non-Axisymmetric Perturbations of Equilibria

I Condition for Thermal Instability: When is Entropy
Extremum a Saddle?



Stability of Axisymmetric Thermal Equilibria



Stability of Axisymmetric Thermal Equilibria



Thermal Instability: Results

Question: Are Axisymmetric Equilibria Thermally Stable?

I Condition for Non-Axisymmetric Perturbations of Equilibria

I Condition for Thermal Instability: When is Entropy
Extremum a Saddle?

I Axisymmetric Equilibria are Prone to Lopsided, m=1
Deformations, over a Broad Range of Energy and Angular
momenta;

I For ` < 0.833, critical energy below which equilibria are
thermally unstable ! Entropy Maximum is a saddle

I Lopsided Equilibria Are Natural Byproduct of Resonant
Relaxation
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Global Thermal Equilibria:Non-Axisymmetry



Global Thermal Equilibria: Mean Eccentricity



Global Thermal Equilibria: Angular Velocity



Global Thermal Equilibria: Lopsided Density



Global Thermal Equilibria: Lopsided Density
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Dynamical Stability

I Linearized Collisionless Boltzmann Equation: All Thermally
Unstable Disks are Dynamically Unstable

I Sample Equilibrium Distributions and Simulate Their
Dynamical Evolution

I Seek the Saturated States of Unstable Configurations

I Confront "Collisionless" Saturated states with "Collisional"
Equilibria
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Road to Saturation: ` = 0, u = −0.55



Phase-Space around Saturation: ` = 0, u = −0.55



Mean Eccentricity around Saturation



Dispersion Around the Mean: ` = 0.5



Kinetics: Relaxation to Lopsidedness

I Resonant Relaxation Drives Nearly-Keplerian Disks to
Lopsided Maximum Entropy Equilibria

I Collisionless Dynamical Instability Drives Nearly-Keplerian
Disks to Lopsided Uniformly Precessing Equilibria

I The Full Story Involves the Complementary Action of Both
Collisionless and Collisional Relaxation

I A Theory for Both is Lacking, though End States Can be
"Securely" Characterized

I Profound Analogies Between Wires and Vortices: Flesh on
Conjecture of years Back, but not yet a Fully Functioning
Body!



Thermal Equilibria: The Report

I Axisymmetric Equilibria are Prone to Lopsided, m=1
Deformations, over a Broad Range of Energy and Angular
Momenta.

I Resonant Relaxation Drives Nearly-Keplerian Disks to
Lopsided Maximum Entropy Equilibria.

I All Thermally Unstable Disks are Dynamically Unstable.

I Dynamical Instability Drives Nearly-Keplerian Disks to
Lopsided Uniformly Precessing Equilibria.

I The Full Story Involves the Complementary Action of Both
Collisionless and Collisional Relaxation.

I A Theory for Both is Lacking, though End States Can be
"Securely" Characterized.



The Resolution

I Counter-Rotating Nearly-Keplerian stellar disks are
unstable: They evolve into lopsided uniformly precessing
configurations.

I Microcanonical Thermal equilibria of narrow, ring-like,
disks are, more often than not, lopsided.

I Life cycle of a self-gravitating Keplerian cluster: relaxation
onto instability, then saturation onto relaxation.
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