
Recent progresses in the development of
a new generation adaptive DG dynamical core

for RegCM

Giovanni Tumolo

The Abdus Salam ICTP and OGS - Trieste, < gtumolo@ictp.it >

Trieste, May 24, 2016



I In collaboration with Luca Bonaventura (MOX-Politecnico di Milano)

I with thanks to
I Filippo Giorgi (ICTP Abdus Salam)

I Graziano Giuliani (ICTP Abdus Salam)

I Marco Restelli (MPI for Plasma Physics)

I and acknowledgements for funding from

I The Abdus Salam International Centre for Theoretical Physics

I Istituto Nazionale di Oceanografia e Geofisica Sperimentale (whithin the
HPC-TRES framework)

I The INdAM-GNCS

I The Royal Meteorological Society



Outline
I Motivation and introduction to the p-SISLDG formulation.
I Review of a novel SISL time integration approach.
I 1st extension: mass conservative mixed Eulerian/semi-Lagrangian

variant.
I 2nd extension: meshes of deformed quadrilaterals on the sphere and on

a vertical plane.
I p−adaptivity.
I Numerical validation:

I horizontal:
I efficiency gain by TR-BDF2: unsteady flow with analytic solution
I efficiency gain by p−adaptivity: Williamson’s test 6
I effects of the mesh deformation on the solution (mass conservative version):

Williamson’s test 2 and unsteady flow with analytic solution

I p−adaptive tracers transport:
I Solid body rotation
I Deformational flow
I Coupling with SWE solver: advection by Rossby-Haurwitz wave

I vertical:
I Interacting bubbles test
I Linear hydrostatic lee waves
I Nonlinear nonhydrostatic lee waves

I Where is the 3D dycore?? Current status and HPC requirements for
using p-SISLDG as a three dimensional dynamical core.

I Further plans and conclusions.



Motivation
I Goal: use DG methods for the design of a new generation dynamical

core for the regional climate modelling system RegCM of ICTP.

I This is challenging for:
I stability restrictions with explicit time stepping:

“The RKDG algorithm is stable provided the following condition holds:

u
∆t
h
<

1
2p + 1

where p is the polynomial degree; (for the linear case this implies a CFL
limit 1

3 )”
Cockburn-Shu, Math. Comp. 1989

I computational cost : DG requires more d.o.f. per element than CG .

I How to increase computational efficiency of DG ?
I coupling DG to semi-implicit semi-Lagrangian (SI-SL) technique (no CFL)

I introduction of p− adaptivity (flexible degrees of freedom)

I =⇒ p-SISLDG method.



p-SISLDG: main features

Main novel features of the proposed p-SISLDG formulation:

I is the first unconditionally stable DG formulation for the shallow water
and for the Euler equations,

I is based on the first fully second order two-time-level SISL time
integrator,

I is the first extensive application of p−adaptivity strategies in NWP,

I employs a unified discretization approach for the horizontal and vertical.



A novel approach for SISL time integration: TR-BDF2

Given a Cauchy problem for a system of ODEs:

y′ = f(y, t),
y(0) = y0,

the TR-BDF2 method is defined by the two following implicit stages (Bank et
al. IEEE trans. 1985):

un+2γ − γ∆tf(un+2γ , tn + 2γ∆t) = un + γ∆tf(un, tn),

un+1 − γ2∆tf(un+1, tn+1) = (1− γ3)un + γ3un+2γ ,

with γ ∈ (0, 1/2] fixed implicitness parameter and

γ2 =
1− 2γ

2(1− γ)
, γ3 =

1− γ2

2γ
.



SL reinterpretation of TR-BDF2
If suitable semi-Lagrangian approximate evolution operators for scalar and
vector valued functions are introduced: [E(tn,∆t)G](x) = G(tn, xD)

where xD = x−
∫ tn+1

tn un (X(t ; tn+1, x)
)

dt and X(t ; tn+1, x) is the solution of:{
d
dt X(t ; tn+1, x) = un

(
X(t ; tn+1, x)

)
X(tn+1; tn+1, x) = x

,

tn

X(tn; tn+1, (x))

x

tn+1

X(tn; tn+1, ·)

i.e. two steps are required to compute [E(tn,∆t)G] (x):

1. departure point xD computation ( e.g. McGregor, Mon. Wea. Rev.,1993);

2. interpolation of Gn at departure point.



SL reinterpretation of TR-BDF2
... and if governing equations in advective form are to be solved:

(being D
Dt the Lagrangian derivative operator)

(SWE) Shallow Water Eqs. (no
Coriolis force):

Dh
Dt

+ h∇ · u = 0,

Du
Dt

+ g∇h = −g∇b,

with h,u = (u, v)T and b being fluid
depth, horizontal velocity and
bathymetry elevation respectively,

(VSE) Euler eqs. (no Coriolis force) on a Vertical
Slice ( ∂

∂y = 0):

DΠ

Dt
+

(
cp

cv
− 1
)

Π∇ · u = 0,

Du
Dt

+ cpΘ
∂π

∂x
= 0,

Dw
Dt

+ cpΘ
∂π

∂z
− g

θ

θ∗
= 0,

Dθ
Dt

+ w
dθ∗

dz
= 0.

with Θ = T
( p

p0

)−R/cp ,Π =
( p

p0

)R/cp ,
p,T ,u = (u,w)T , pressure, temperature and
vertical velocity, cp, cv ,R specific heats and gas
constant of dry air, and

Π(x , y , z, t) = π∗(z) + π(x , y , z, t),

Θ(x , y , z, t) = θ∗(z) + θ(x , y , z, t),

where π∗, θ∗ are chosen s.t. cpθ
∗ dπ∗

dz = −g,



... then SISL-TR steps for SWE and VSE are isomorphic

hn+2γ + γ∆t hn ∇ · un+2γ =

E
(
tn
, 2γ∆t

)
[h − γ∆t h ∇ · u] ,

un+2γ + γ∆t g∇hn+2γ = −γ∆t g∇b

+E
(
tn
, 2γ∆t

)
{u− γ∆t [g(∇h + ∇b)]} .

π
n+2γ + γ∆t (cp/cv − 1) Πn∇ · un+2γ = −π∗

+E
(
tn
, 2γ∆t

)
[Π− γ∆t (cp/cv − 1) Π ∇ · u] ,

un+2γ + γ∆t cpΘn ∂π

∂x

n+2γ
=

E(tn
, 2γ∆t)

[
u − γ∆t cpΘ

∂π

∂x

]
,

(
1 + (γ∆t)2 g

θ∗
dθ∗

dz

)
wn+2γ + γ∆tcpΘn ∂π

∂z

n+2γ
=

E(tn
, 2γ∆t)

[
w − γ∆t

(
cpΘ

∂π

∂z
− g

θ

θ∗

)]
+γ∆t

g
θ∗

E(tn
, 2γ∆t)

[
θ − γ∆t

dθ∗

dz
w
]
.

h ←→ π,

u ←→ u,

v ←→ w .



then SISL-BDF2 steps for SWE and VSE are isomorphic

hn+1 + γ2∆t hn+2γ ∇ · un+1 =(
1− γ3

)
E
(
tn
,∆t
)
h

+γ3E
(
tn + 2γ∆t, (1− 2γ)∆t

)
h,

un+1 + γ2∆t g∇hn+1 =

−γ2∆t g∇b

+
(
1− γ3

)
E
(
tn
,∆t
)
u

+γ3E
(
tn + 2γ∆t, (1− 2γ)∆t

)
u.

π
n+1 + γ2∆t (cp/cv − 1) Πn+2γ∇ · un+1 =

−π∗ + (1− γ3)[E
(
tn
,∆t
)

Π]

+γ3[E
(
tn + 2γ∆t, (1− 2γ)∆t

)
Π],

un+1 + γ2∆t cpΘn+2γ ∂π

∂x

n+1
=

(1− γ3)[E
(
tn
,∆t
)

u]

+γ3[E
(
tn + 2γ∆t, (1− 2γ)∆t

)
u],

(
1 + (γ2∆t)2 g

θ∗
dθ∗

dz

)
wn+1 + γ2∆t cpΘn+2γ ∂π

∂z

n+1
=

(1− γ3)[E
(
tn
,∆t
)

w ] + γ3[E
(
tn + 2γ∆t, (1− 2γ)∆t

)
w ] +

γ2∆t
g
θ∗

{
(1− γ3)[E

(
tn
,∆t
)
θ] + γ3[E

(
tn + 2γ∆t, (1− 2γ)∆t

)
θ]
}
.

h ←→ π,

u ←→ u,

v ←→ w .



1st Extension: mass conservation, SISL-TR-BDF2 time discretization
Considering the continuity equation in Eulerian flux form, while the
momentum one in advective vector form:

∂η

∂t
= −∇ · (hu),

Du
Dt

= −g∇η − fk× u,

then, the TR stage of the SISL time discretization of previous equations is:

ηn+2γ + γ∆t ∇ ·
(

hnun+2γ
)

= ηn − γ∆t ∇ · (hnun),

un+2γ + γ∆t
(

g∇ηn+2γ + fk× un+2γ
)

= E
(
tn, 2γ∆t

)
[u− γ∆t (g∇η + fk× u)] .

The TR stage is then followed by the BDF2 stage:

ηn+1 + γ2∆t ∇ · (hn+2γun+1) =
(
1− γ3

)
ηn + γ3 η

n+2γ ,

un+1 + γ2∆t
(

g∇ηn+1 + fk× un+1
)

=
(
1− γ3

)
E
(
tn,∆t

)
u + γ3E

(
tn + 2γ∆t , (1− 2γ)∆t

)
u.



DG space discretization
I Defined a tassellation Th = {KI}N

I=1 of domain Ω and chosen ∀KI ∈ Th

three integers pπI ≥ 0, pθI ≥ 0, pu
I ≥ 0, at each time level tn, we are

looking for approximate solution s.t.
hn, πn ∈ Ph :=

{
f ∈ L2(Ω) : f |KI ∈ QpπI

(KI)
}

θn ∈ Th :=
{

f ∈ L2(Ω) : f |KI ∈ QpθI
(KI)

}
un, vn,wn ∈ Vh :=

{
g ∈ L2(Ω) : g|KI ∈ Qpu

I
(KI)

}
,

I modal bases are used to span Ph,Th,Vh,

I L2 projection against test functions (chosen equal to the basis functions),

I introduction of (centered) numerical fluxes,

I substitution of velocity d.o.f. from momentum eqs. into the continuity eq.,

I give raise, at each SI step, to a discrete (vector) Helmholtz equation in
the fluid depth / pressure unknown only,

i.e. a sparse block structured
nonsymmetric linear system is solved
by GMRES with block diagonal (for the
moment) preconditioning.



Potential of p−adaptivity for atmospheric modelling applications

I No remeshing required of many physical quantities like orography
profiles, data on land use and soil type, land-sea masks.

I Completely independent resolution for each single model variable.

I Easier coupling with SL technique, especially on unstructured meshes
(no need to store two meshes).

I Possibility also of static p-adaptation: e.g. reduced p as counterpart of
reduced grid, i.e. locally imposed p controlling the local Courant number
(=⇒ significant #gmres-iterations reduction).

I Main potential problem: dynamic load balancing is mandatory for
massively parallel implementations.



2nd extension: mesh deformation on the sphere

x = FI,1(ξ1, ξ2) = xA
I

1− ξ1

2
1− ξ2

2
+ xB

I
1 + ξ1

2
1− ξ2

2
+ xC

I
1 + ξ1

2
1 + ξ2

2
+ xD

I
1− ξ1

2
1 + ξ2

2
,

y = FI,2(ξ1, ξ2) = yA
I

1− ξ1

2
1− ξ2

2
+ yB

I
1 + ξ1

2
1− ξ2

2
+ yC

I
1 + ξ1

2
1 + ξ2

2
+ yD

I
1− ξ1

2
1 + ξ2

2
,

( adapted from Weller 2012 )



2nd extension: mesh deformation on a vertical plane, topography in z
coordinate

x = FI,1(ξ1, ξ2) = xA
I

1− ξ1

2
1− ξ2

2
+ xB

I
1 + ξ1

2
1− ξ2

2
+ xC

I
1 + ξ1

2
1 + ξ2

2
+ xD

I
1− ξ1

2
1 + ξ2

2
,

z = FI,2(ξ1, ξ2) = zA
I

1− ξ1

2
1− ξ2

2
+ zB

I
1 + ξ1

2
1− ξ2

2
+ zC

I
1 + ξ1

2
1 + ξ2

2
+ zD

I
1− ξ1

2
1 + ξ2

2
.



Numerical Validation



Shallow Water Equations (SWE) on the sphere



Unsteady flow with analytic solution (Läuter 2005):
TR-BDF2 vs off centerd Crank Nicolson

I Relative errors for TR-BDF2 at different resolutions, ∆t in seconds:

Nx × Ny ∆t l1(h) l2(h) l∞(h) qemp
2

10× 5 3600 5.46× 10−3 6.12× 10−3 9.54× 10−3 -
20× 10 1800 1.25× 10−3 1.40× 10−3 2.14× 10−3 2.1
40× 20 900 3.04× 10−4 3.41× 10−4 5.21× 10−4 2.0
80× 40 450 7.55× 10−5 8.47× 10−5 1.29× 10−4 2.0

I Relative errors for off-centered Crank Nicolson (θ = 0.6) at different resolutions:

Nx × Ny ∆t l1(h) l2(h) l∞(h) qemp
2

10× 5 3600 1.44× 10−2 1.63× 10−2 2.40× 10−2 -
20× 10 1800 8.74× 10−3 9.89× 10−3 1.44× 10−2 0.7
40× 20 900 4.81× 10−3 5.45× 10−3 7.96× 10−3 0.9
80× 40 450 2.53× 10−3 2.86× 10−3 4.18× 10−3 0.9

I At max. resolution in space and time (80× 40 el., ∆t = 450s) error norms for TR-BDF2 are
around 34 times smaller than those of off-centered Crank Nicolson, while CPU time is
equivalent (104.3s for a time step of TR-BDF2 vs 99.9s for a time step of off centerd CN).

I At fixed resolution in space (40× 20 el.), off centered Crank Nicolson needs to be run with a
16 times smaller ∆t in order to reach same level of accuracy of TR-BDF2 with ∆t = 900s.
=⇒ CPU time for TR-BDF2 is around 20% that of off-centered CN for same accuracy.



Combination of static + dynamic p-adaptation: Williamson’s test 6
64× 32 elements, maxph = 4, ∆t = 900s (Ccel ≈ 83 without adaptivity).

#gmres-iterations(ph = adapted)

#gmres-iterations(ph = uniform)
≈ 13%, ∆n

dof =

∑N
I=1(pn

I + 1)2

N(pmax + 1)2
≈ 45%.



Williamson’s test 6: time convergence rate and p-adaptation efficiency

I Relative errors at tf = 15 days for different number of elements, with
respect to NCAR spectral model solution at resolution T511:

Nx × Ny ∆t [min] l1(h) l2(h) l∞(h) qemp
2

10× 5 60 2.92× 10−2 3.82× 10−2 6.75× 10−2 -
20× 10 30 5.50× 10−3 6.80× 10−3 1.11× 10−2 2.4
40× 20 15 1.40× 10−3 1.80× 10−3 3.20× 10−3 2.0

I Relative differences btw adaptive (tol. ε = 10−2) and nonadaptive
solution at tf = 15 days:

adaptivity l1(h) l2(h) l∞(h)

static 2.182× 10−4 3.434× 10−4 2.856× 10−4

static + dynamic 3.407× 10−4 4.301× 10−4 7.484× 10−4

I CPU time: static and dynamic p-adaptive solution execution time is
around 24% of that for nonadaptive solution.



Williamson’s test 6: deformed vs. aligned mesh

pη = 4, pu = 5, Nx × Ny = 32× 16, tf = 15days

d1 = 1.058× 10−3

d2 = 1.263× 10−3

d∞ = 2.568× 10−3



Mass conservative formulation on deformed mesh: convergence rate,
Williamson’s test 2

pη = pu = 3

Nx × Ny ∆t [s] l1(η) l2(η) l∞(η) qemp
2

20× 10 1800 5.59× 10−5 8.39× 10−5 1.20× 10−3 -
40× 20 900 5.84× 10−6 8.66× 10−6 1.67× 10−4 3.3
80× 40 450 7.50× 10−7 1.02× 10−6 6.88× 10−6 3.1

Nx × Ny ∆t [s] l1(u) l2(u) l∞(u) qemp
2

20× 10 1800 7.72× 10−4 1.51× 10−3 1.35× 10−2 -
40× 20 900 7.46× 10−5 2.78× 10−4 6.77× 10−3 2.5
80× 40 450 4.69× 10−6 1.00× 10−5 2.03× 10−4 4.8

Nx × Ny ∆t [s] l1(v) l2(v) l∞(v) qemp
2

20× 10 1800 8.23× 10−4 1.09× 10−3 9.98× 10−3 -
40× 20 900 7.87× 10−5 1.58× 10−4 2.66× 10−3 2.8
80× 40 450 8.12× 10−6 1.84× 10−5 4.70× 10−4 3.1



Mass conservative formulation: errors for deformed vs. aligned mesh,
unsteady flow with analytic solution (Läuter 2005)

pη = 4, pu = 5, Nx × Ny = 20× 10, tf = 5days

mesh l1(η) l2(η) l∞(η)

distorted 1.574439× 10−3 2.015191× 10−3 6.223918× 10−3

aligned 1.574433× 10−3 2.015189× 10−3 6.220938× 10−3

mesh l1(u) l2(u) l∞(u)

distorted 3.062825× 10−2 3.816815× 10−2 7.295160× 10−2

aligned 3.062796× 10−2 3.816801× 10−2 7.293568× 10−2

mesh l1(v) l2(v) l∞(v)

distorted 2.105254× 10−2 2.195037× 10−2 3.832416× 10−2

aligned 2.105328× 10−2 2.195039× 10−2 3.833373× 10−2



p-adaptive tracers advection



Solid body rotation on the sphere

120× 60 elements, max pc = 4, ∆t = 7200s, Cvel,x ≈ 400, Cvel,y ≈ 4



Deformational flow on the sphere (adapted from Nair, Lauritzen 2010)

80× 40 elements, max pc = 4, ∆t = 1800s



Rossby Haurwitz wave velocity field

120× 60 elements, max pc = 4, ∆t = 900s, Cvel,x ≈ 1



Euler equations on a Vertical Slice (VSE)



Warm bubble test (Carpenter et al., MWR 1990)
49× 60 elements, pπ = 4, pu = 5, ∆t = 1 s, C ≈ 18.

variable l1 l2 l∞

π 2.744× 10−3 4.92× 10−3 3.86× 10−2

θ 1.70× 10−2 4.38× 10−2 9.34× 10−2

u 3.64× 10−4 1.14× 10−3 3.60× 10−2

Table: Relative differences between adaptive and nonadaptive solution for warm bubble
test case.



Interacting bubbles test (Robert, 1993)

50× 50 elements, pπ = 4, pu = 5, ∆t = 1 s, C ≈ 87.



Linear hydrostatic lee waves

60× 50 elements, pπ = 4, pu = 5, ∆t = 7 s, CV ≈ 7,CH ≈ 9.

( maximum space resolution 2 km )



Linear hydrostatic lee waves

60× 50 elements, pπ = 4, pu = 5, ∆t = 7 s, CV ≈ 7,CH ≈ 9.
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Linear hydrostatic lee waves: adaptive run

60× 50 elements, pπ = pu = 4, ∆t = 7 s, CV ≈ 7,CH ≈ 9.

( maximum space resolution 2 km )



Nonlinear nonhydrostatic lee waves

60× 50 elements, pπ = 4, pu = 5, ∆t = 2 s, CV ≈ 25,CH ≈ 13.

( maximum space resolution 200m )



Nonlinear nonhydrostatic lee waves

60× 50 elements, pπ = 4, pu = 5, ∆t = 2 s, CV ≈ 25,CH ≈ 13.
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Nonlinear nonhydrostatic lee waves: adaptive run

100× 50 elements, pπ = pu = 4, ∆t = 2 s, CV ≈ 25,CH ≈ 13.

( maximum space resolution 200m )



Main challenges towards p-SISLDG parallelization

I semi-implicit stencil requires
communication

I semi-Lagrangian advection
stencil requires communication as
well

I dynamic p−adaptivity requires
dynamic load balancing

tn

X(tn; tn+1, (x))

x

tn+1

X(tn; tn+1, ·)



Where is the 3D dynamical core ??



Preliminary results with the 3D dycore

Solid body advection of a tracer
concentration:

Eulerian formulation,

explicit Runge-Kutta 4 time integrator.



Towards a three dimensional dynamical core
I Up to now, no general HPC infrastructures for efficient and natively

p-adaptive implementations of DG methods on massively parallel were
available;

I hence a new design of the three dimensional code was needed by using
I indirect adressing for the elements;

I direct adressing for element degrees of freedom;

I advanced data types (object-oriented programming);

I global arrays of pointers to local data structures to avoid the use of linked
lists and to make easier the migration of elements between processes;

I this is the basis for the parallel programming design of p-SISLDG around
these criteria:

I SPMD style programming (like MPI + OpenMP);

I dynamic load balancing based for example on the use of Space Filling
Curves (SFCs) (under evaluation as other options like collection of adaptive
octrees);

I overlap between computation and communication;

I adoption of standards / reduction use of external libraries (for example by
use of Fortran coarrays).



Open issues and future perspectives

I Improvement of the linear solver for the SI step: hierachical Krylov
solver;

I introduction of the SL discretization of diffusive terms; (see L.
Bonaventura and R. Ferretti, SIAM J. Sci. Comp. 2014 );

I development of a conservative fully semi-Lagrangian version (along the
lines of M. Restelli, M. Bonaventura, R. Sacco, J. Comput. Phys., 2006);

I from next October available a new resource (provided by Politecnico di
Milano and OGS whithin the HPC-TRES framework) working on related
topics.



Conclusions
I I a novel TR-BDF2-based SISL discretization has been presented within the

DG framework for the rotating SWE as well as for the Euler equations on a
vertical slice, that can be effectively applied to all geophysical scale flows.

I The resulting scheme is

I unconditionally stable,

I full second order accurate in time,

I arbitrary high order in space,

I adapting the number of degrees of freedom in each element in order to balance
accuracy and computational cost,

I extended to deformed meshes with no grid imprinting and extendable to arbitrary
non-structured even non-conforming meshes,

I equipped with mass conservative version,

I multiscale i.e. the same unified model (and therefore architecture) can be
successfully run at a range of scales from global to regional (self generation of
BC’s).

I Numerical experiments confirm the potential of the proposed formulation.

I Parallel 3D version at advanced stage of development (nontrivial challenge
from the HPC side).

I THANK YOU FOR YOUR ATTENTION!
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Dynamic p-adaptation: the strategy
I p-adaptivity easier by the use of modal bases: here tensor products of Legendre polynomials;
I hence, the representation for a model variable α becomes (I = (Ix , Iy ) multi-index):

α(x)
∣∣

KI
=

pαI +1∑
k=1

pαI +1∑
l=1

αI,k,lψIx ,k (x)ψIy ,l (y).

I and its 2-norm is given by (in planar geometry):

E tot
I =

pαI +1∑
k,l=1

α
2
I,k,l =

pαI +1∑
r=1

E r
I , E

r
I :=

∑
max(k,l)=r

α
2
I,k,l ,

I while the quantity w r
I =

√
Er

I
Etot

I
will measure the relative ’weight’ of the r− degree modes

I Given an error tolerance εI > 0 for all I = 1, . . . ,N, at each time step repeat following steps:
1) compute wpi

2.1) if wpi ≥ εi , then
2.1.1) set pi (α) := pi (α) + 1
2.1.2) set αi,pi = 0, exit the loop and go the next element

2.2) if instead wpi < εi , then
2.2.1) compute wpi−1

2.2.2) if wpi−1 ≥ εi , exit the loop and go the next element
2.2.3) else if wpi−1 < εi , set pi (α) := pi (α)− 1 and go back to 2.2.1.
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