Convection-resolving climate change simulations: Short-term precipitation extremes in a changing climate

> Nikolina Ban¹, Jürg Schmidli² and Christoph Schär¹

¹Institute for Atmospheric and Climate Science, ETH Zürich ²Goethe University, Frankfurt

8th RegCM Workshop May 2016, ICTP, Trieste

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
●000	00	0000000	00000	000	

Hydrological Impacts of Heavy Precipitation

Flash floods

Saanen (Switzerland), Jul 2010

Graubünden (Switzerland), Aug 2014

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	0000000	00000	000	

[Allen and Ingram, 2002]

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	0000000	00000	000	

 Do heavy hourly precipitation events increase at adiabatic (~6-7 %/K) or super-adiabatic (~14 %/K) rate?

Introduction 0000	Method 00	Evaluation 0000000	Climate Change 00000	crCLIM 000	Summary
Numerical m	odeling of cli	mate			

• CRM: Convection-resolving model enables explicit simulation of convection (e.g., thunderstorms, rain showers)

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	0000000	00000	000	
Numerical m	odeling of cli	mate			

- CRM: Convection-resolving model enables explicit simulation of convection (e.g., thunderstorms, rain showers)
- CRM pioneering studies: Grell et al., 2000; Hohenegger et al., 2008; Knote et al., 2010; Kendon et al., 2012, 2014; Langhans et al., 2013; Prein et al., 2013; Rasmussen et al., 2014; Ban et al., 2014, 2015; Prein et al., 2015 (review paper), Brisson et al., 2016

[Figures: E. Zubler]

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
000	00	0000000	00000	000	
Objectives					

Evaluation

- Does CRM improve representation of precipitation distribution and statistics?
- How do precipitation extremes scale with temperature? With Clausius-Clapeyron relation?

Climate Change

- Difference between CRM and conventional climate models?
- Link between temperature change & precipitation change?

Continental-scale convection-resolving climate simulations (crCLIM)

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	●○	0000000	00000	000	
Setup					

Two-step one-way nesting: $BC \Rightarrow CPM12 \Rightarrow CRM2$

- CPM12 and CRM2 use COSMO-CLM v4.14
- Boundary Conditions: ERA-Interim reanalysis & MPI-ESM-LR (RCP8.5)
- CPM12: Convection–Parameterizing Model
 - △x=12 km (0.11°)
 - XxYxZ=260x228x60
- CRM2: Convection–Resolving Model
 - △x=2.2 km (0.02°)
 - XxYxZ=500x500x60

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	●O	0000000	00000	000	
Setup					

Two-step one-way nesting: $BC \Rightarrow CPM12 \Rightarrow CRM2$

- CPM12 and CRM2 use COSMO-CLM v4.14
- Boundary Conditions: ERA-Interim reanalysis & MPI-ESM-LR (RCP8.5)
- CPM12: Convection–Parameterizing Model
 - △x=12 km (0.11°)
 - XxYxZ=260x228x60
 - Parametrization of convection: Tiedtke
- CRM2: Convection–Resolving Model
 - △x=2.2 km (0.02°)
 - XxYxZ=500x500x60
 - Convection explicitly resolved
 - Shallow convection: Tiedtke

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	●O	0000000	00000	000	
Setup					

Two-step one-way nesting: $BC \Rightarrow CPM12 \Rightarrow CRM2$

- CPM12 and CRM2 use COSMO-CLM v4.14
- Boundary Conditions: ERA-Interim reanalysis & MPI-ESM-LR (RCP8.5)
- CPM12: Convection–Parameterizing Model
 - △x=12 km (0.11°)
 - XxYxZ=260x228x60
 - Parametrization of convection: Tiedtke
- CRM2: Convection–Resolving Model
 - △x=2.2 km (0.02°)
 - XxYxZ=500x500x60
 - Convection explicitly resolved
 - Shallow convection: Tiedtke

The numerical simulations have been performed on the CRAY XT5 and CRAY XE6 at CSCS

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	○●	0000000	00000	000	

Experiments: CRM Simulations for the Greater Alpine Region

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	○●	0000000	00000	000	

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	○●	0000000	00000	000	

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	000000	00000	000	

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	000000	00000	000	

• Wallclock time: 1×10y CRM2 \rightarrow ≈4-8months

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	000000	00000	000	

Evaluation of Precipitation in Present-Day Climate

• ERA-Interim driven simulations (1998-2007)

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	000000	00000	000	

The 90th percentiles of daily/hourly precipitation in JJA

The 90th percentiles of daily precipitation

[Obs - APGD (Isotta et al., 2014), EOBS (Haylock et al., 2008) and RdisaggH (Wüest et al., 2010)]

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	000000	00000	000	

The 90th percentiles of daily/hourly precipitation in JJA

The 90th percentiles of daily precipitation

The 90th percentiles of hourly precipitation

[Obs - APGD (Isotta et al., 2014), EOBS (Haylock et al., 2008) and RdisaggH (Wüest et al., 2010)]

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	000000	00000	000	

Frequency Distribution of Precipitation (JJA)

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	000000	00000	000	

Frequency Distribution of Precipitation (JJA)

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	000000	00000	000	

Evolution of the Hourly Precipitation (July 12-14, 2006)

 $\mathsf{Obs} \to \mathsf{combined} \text{ radar and rain gauge observations (Wüest et al., 2010)}$ $\mathsf{CRM2} \to \mathsf{explicit convection} \ (\triangle=2.2\mathsf{km})$ $\mathsf{CPM12} \to \mathsf{parametrized convection} \ (\triangle=12\mathsf{km})$

Introduction 0000	Method 00	Evaluation 0000000	Climate Change	crCLIM 000	Summary

Diurnal Cycle of Summer Precipitation

[Analysis for 62 Swiss stations]

CRM2 realistically simulates amplitude and phase of the diurnal cycle

Introduction 0000	Method 00	Evaluation	Climate Change 00000	crCLIM 000	Summary

Scaling of Extreme Hourly Precipitation Events

• Super-adiabatic scaling captured by both models

Temperature [°C]

(Ban et al., 2014 JGR)

Temperature [°C]

Temperature [°C]

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	0000000	0000	000	

Projections of precipitation

• based on GCM-driven scenarios for 2081-2090 (RCP8.5) versus 1991-2000

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	0000000	○●○○○	000	
C					

Summer precipitation

Relative change $\rightarrow \frac{SCEN-CTRL}{CTRL}$

• Increase in extreme precipitation despite an overall drying

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	0000000	00●00	000	

Summer Precipitation on Daily Timescales

Relative change in percentile intensities \rightarrow (SCEN-CTRL)/CTRL

[Average across the CRM2 domain]

• Close agreement of CRM2 and CPM12

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	000000	00000	000	

Summer Precipitation on Hourly Timescales

[Average across the CRM2 domain]

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	000000	00000	000	

Summer Precipitation on Hourly Timescales

[Average across the CRM2 domain]

CRM2 exhibits smaller changes than CPM12

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	000000	00000	000	

Moistening of the atmosphere is determined by Clausius-Clapeyron relation:

$$\frac{1}{e_{sat}}\frac{de_{sat}}{dT}\approx 6-7\%/K \qquad \Longrightarrow \qquad \frac{1}{P_{extreme}}\frac{dP_{extreme}}{dT}\approx 6-7\%/K$$

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	0000000	00000	000	

Moistening of the atmosphere is determined by Clausius-Clapeyron relation:

$$\frac{1}{e_{sat}}\frac{de_{sat}}{dT}\approx 6-7\%/K \qquad \Longrightarrow \qquad \frac{1}{P_{extreme}}\frac{dP_{extreme}}{dT}\approx 6-7\%/K$$

Daily precipitation (JJA)

(Ban et al., 2015)

Moistening of the atmosphere is determined by Clausius-Clapeyron relation:

 \Rightarrow Extreme daily and hourly precipitation asymptotically intensify with the Clausius-Clapeyron relation

• Assessment uses all-event percentiles (Schär et al., 2016)(Ban et al., 2015)

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	0000000	00000	●○○	

Convection-Resolving Climate Modeling on Future Supercomputing Platforms (crClim)

http://www.c2sm.ethz.ch/research/crCLIM.html

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	0000000	00000	000	

European-Scale Convection-Resolving Climate Simulations (crClim)

- Two-step one-way nesting: ERA-Interim \Rightarrow 12km \Rightarrow 2.2km
- 1536×1536×60 grid points
- 10-year long period: 1999-2008
 ⇒ Completed
- Wall-clock time: 1 year \Rightarrow 5 days
- GPU version of COSMO (Fuhrer et al., 2014)

(Leutwyler et al., 2016 Submitted to GMD)

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	0000000	00000	000	

European-Scale Convection-Resolving Climate Simulations (crClim)

- Two-step one-way nesting: ERA-Interim \Rightarrow 12km \Rightarrow 2.2km
- 1536×1536×60 grid points
- 10-year long period: 1999-2008
 ⇒ Completed
- Wall-clock time: 1 year \Rightarrow 5 days
- GPU version of COSMO (Fuhrer et al., 2014)
 - Dynamical core rewritten in C++
 - Parameterizations use OpenACC
 - Runs on Piz Daint (Cray XC30, CSCS)
 - Used for operational NWP at MeteoSwiss (Δx=1 km)

(Leutwyler et al., 2016 Submitted to GMD)

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	0000000	00000	○O●	

Diurnal Cycle of Convection

Introduction 0000	Method 00	Evaluation 0000000	Climate Change	crCLIM 000	Summary
Summary					

• CRM2 strongly improves the simulation of the sub-daily precipitation

Introduction	Method	Evaluation	Climate Change	crCLIM	Summary
0000	00	0000000	00000	000	
Summary					

- CRM2 strongly improves the simulation of the sub-daily precipitation
- CRM2 exhibits super-adiabatic and adiabatic scaling for hourly warm-season precipitation, while only adiabatic for hourly cold-season precipitation (in accordance with observations)

Introduction 0000	Method 00	Evaluation 0000000	Climate Change	crCLIM 000	Summary
Summary					

- CRM2 strongly improves the simulation of the sub-daily precipitation
- CRM2 exhibits super-adiabatic and adiabatic scaling for hourly warm-season precipitation, while only adiabatic for hourly cold-season precipitation (in accordance with observations)
- Close agreement of CRM2 and CPM12 regarding the changes in daily precipitation; for hourly extreme precipitation CRM2 exhibits smaller changes than CPM12

Introduction 0000	Method 00	Evaluation 0000000	Climate Change	crCLIM 000	Summary
Summary					

- CRM2 strongly improves the simulation of the sub-daily precipitation
- CRM2 exhibits super-adiabatic and adiabatic scaling for hourly warm-season precipitation, while only adiabatic for hourly cold-season precipitation (in accordance with observations)
- Close agreement of CRM2 and CPM12 regarding the changes in daily precipitation; for hourly extreme precipitation CRM2 exhibits smaller changes than CPM12
- CRM2 is consistent with theoretical expectations \Rightarrow Changes in extreme summer precipitation qualitatively scale with the Clausius-Clapeyron rate

Introduction 0000	Method 00	Evaluation 0000000	Climate Change	crCLIM 000	Summary
Summary					

- CRM2 strongly improves the simulation of the sub-daily precipitation
- CRM2 exhibits super-adiabatic and adiabatic scaling for hourly warm-season precipitation, while only adiabatic for hourly cold-season precipitation (in accordance with observations)
- Close agreement of CRM2 and CPM12 regarding the changes in daily precipitation; for hourly extreme precipitation CRM2 exhibits smaller changes than CPM12
- CRM2 is consistent with theoretical expectations \Rightarrow Changes in extreme summer precipitation qualitatively scale with the Clausius-Clapeyron rate

 \star Currently this work is extended to simulations that cover Europe

Introduction 0000	Method 00	Evaluation 0000000	Climate Change	crCLIM 000	Summary
Summary					

- CRM2 strongly improves the simulation of the sub-daily precipitation
- CRM2 exhibits super-adiabatic and adiabatic scaling for hourly warm-season precipitation, while only adiabatic for hourly cold-season precipitation (in accordance with observations)
- Close agreement of CRM2 and CPM12 regarding the changes in daily precipitation; for hourly extreme precipitation CRM2 exhibits smaller changes than CPM12
- CRM2 is consistent with theoretical expectations \Rightarrow Changes in extreme summer precipitation qualitatively scale with the Clausius-Clapeyron rate

 \star Currently this work is extended to simulations that cover Europe

Thank you for your attention!