Introduction to EULAG
(and cloud modeling in general)

Wojciech W. Grabowski

NCAR, Boulder, USA

RNCAR

/l

managed by UCA



SMALL-SCALE
DYNAMICS:

In the spirit of the
Boussinesq approximation,
moisture and condensate
affect gas dynamics
equations only though the
buoyancy term

p=pRT
pip=pp+T/T

p~1000 hPa
p’~pu’ ~1hPa

‘2_:: = —le — gk + ....(Coriolis, turbulence, etc)
p
p=polz) +¢
p="p.(z) +7'
dw op op'
! — o &
(o + ) Gy = = g pod = 5 O

du 1o, P
dt po pO

For small-Mach number flows (|Ju| < ¢; ¢, - speed
of sound):
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Density temperature T;: the temperature dry air has
to have to yield the same density as moist cloudy air
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T - air temperature
g - water vapor mixing ratio (~ 107%)

@Q - condensate mixing ratio (cloud water, rain, ice,
snow, etc.; ~ 107°)
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(and much more!)
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Water vapor is a minor constituent:

mass loading is typically smaller than 1%; thermodynamic properties (e.g.,
specific heats etc) only slightly modified;

Suspended small particles (cloud droplets, cloud ice):

mass loading is typically smaller than a few tenths of 1%, particles are much
smaller than the smallest scale of the flow; multiphase approach is not required,
but sometimes used (e.g., DNS with suspended droplets, Lagrangian Cloud
Model)

Precipitation (raindrops, snowflakes, graupel, hail):

mass loading can reach a few %, particles are larger than the smallest scale
the flow; multiphase approach needed only for very-small-scale modeling



Continuous medium approach: apply density as
the main field variable (density of water vapor,
density of cloud water, density of rainwater, etc...)

Opy
ot
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In practice, mixing ratios are typically used. Mixing
ratio is the ratio between the density (of water
vapor, cloud water...) and the air density.



Mixing ratios
versus specific
humidities...
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Lagrangian versus Eulerian formulation

P(x+uAt, y+vAt, z+wAt, t+At) DU O
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combined with dry air continuity equation:
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For the anelastic system:
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And we also need equation for the temperature:

First Law of Thermodynamics:

dq = du + p dv (1)

dq - heat (per unit mass) added to the system
du - increase of internal energy (per unit mass)
p dv - work (per unit mass) performed by the system

du=c,dl', pv=RT, v=1/p, c,+R=x¢p

RT
dq = ¢, dT' — —dp (2)
P
Indtroducing potential temperature as:
. R/cp
0=T (p—> (3)
p

where p,,=const (typically 1000 mb), (1) can be written as:
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df =
cp T’

dq (4)



And we also need equation for the temperature:

do 6
-9
dt  c,T
dq . . . -1 -1
where S = o In the heat source per unit mass [in J kg™ s77]

S = 0 - adiabatic motions

S # 0 - motions with diabatic processes (heating due to
radiative transfer, phases changes, chemical reactions, etc)

For phase changes of water substance:

S = L@
dt

where L is the latent heat (of condensation, freezing, or

L dq . :
sublimation), and T 5 the change of corresponding water

mixing ratio



solving a system of PDEs
(advection/diffusion type) coupled through the source terms:
o

— =S5
dt — "’
dq,
v _ g
dt v
fori=1,N :
dqci') ]
— g()
dt

f - potential temperature

qv - water vapor mixing ratio

qgl) - condensed water mixing ratios

S~ sources/sinks for condensed water (phase
changes, transfer from one category to another,

sedimentation, etc.)



BULK MODEL OF CONDENSATION:

dd L,6
= = C
dt T °
dgy
=-C
dt d
dq.
C — C
dt d

f - potential temperature

g» - water vapor mixing ratio

g- - cloud water mixing ratio

L, - latent heat of condensation /evaporation
C4 - condensation rate

Note: 6/T function of pressure only (= 6,/T,)

Cy is defined such that cloud is always at saturation,
which is a very good approximation:
. =0 1if g, < gys
qc > 0 only if qv = Qus

es(T)

p
mixing ratio at saturation

where g,s(p,T) ~ 0.622 is the water vapor
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A very simple (but useful) model: rising adiabatic parcel...

BOMEX theta and qv profiles
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Take a parcel from
the surface and
move it up...

d6 L,6
i C
dt  c,T °
dq.,
=-C
dt d
dq.
C — C
dr d

.. by solving these

equations.



L,0.

O+ = 0% + = Aq
cple
ot =qf — Aq

gEtt = gF + Aq
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o1, q 1, q.
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L v ee
cple

qF — Aq = qus (0" + Aq)

The nonlinear equation for Aq can be solved
using the Newton-Raphson method...






height (km)

adiabatic parcel profiles (solid)
BOMEX theta and qv profiles (dashed)
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Look not only on the patterns (i.e., processes), but also on specific numbers
(e.g., temperature change, mixing ratios, etc).



Invariant
variables:

total water,

liquid water
potential
temperature,

equivalent
potential
temperature.

If §/T = const (shallow convection approximation)

dt ¢, T
dq,
P
dg.
i
can be converted into:
df;
@ 0
dQ
o= 0

f; is one of the two:

6, =6+ L'U; g, - equivalent potential temperature
cpT

L.,6

6, =0— LTqC - liquid water potential temperature
Cp

@ = q, + q. - total water mixing ratio



. WARM RAIN BULK MODEL (Kessler 1969):
Addlng (Kessler )

rain or @ _ LS Evap)
. dt cPT
drizzle: da
v _ _ ) VA
7 Cy;+ EVAP
dq.

=Cy —AUT — ACC

dg, 10
Ir _ 22 (pgvs) + AUT + ACC — EVAP

THE DISTRIBUTION OF RAINDROPS WITH SIZE dt P dz

By J. S. Marshall and W. McK. Palmer!
MeGill University, Montreal .
(Manuscript received 26 January 1948) 6 - pote ntlal temperature

g» - water vapor mixing ratio
ge - cloud water mixing ratio
gr - Tain water mixing ratio
C'y - condensation rate

T o EV AP - rain evaporation rate

€ | :

i AUT - “autoconversion” rate: g. — ¢,
20 ACC - accretion rate: q., ¢, — gy

v+(g,) - rain terminal velocity (typically derived by

assuming a drop size distribution; e.g., the Marshall-

o'l : L L 1 Palmer distribution N(D) = N exp(—AD), N, =
D(mm) 107 m_4).

Fic. 2. Distribution function (solid straight lines) compared
with results of Laws and Parsons (broken lines) and Ottawa
observations (dotted lines).




We need something more complicated than a rising parcel as rain has to fall
out. One possibility is to use the kinematic (prescribed flow) framework...
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Cloud water and rain
(drizzle) fields after 2
hrs (almost quasi-
equilibrium...)



BabyEULAG documentation and code



Equations to be solved

The equations solved by the babyEULAG in the warm-rain version are (e.g.. Grabowski and
Smolarkiewicz. MWR 1996; Grabowsk: 1998):

dv
— =-Vr+kB+D, (1a) —
_ (fluid flow)
V(pv) =0, (1b)
de Lo
—=—=(C,—E,) + Dy, le
& op CE)EDe (10 \
a9, _ -C,+E, +D,, (1d)
dt ‘ Thermodynamics
dg (temperature and
d; =C;—A-C+D,, | (le) moisture variables)
dg. 1 0 _ j
— . — ,,+A,+C,—'E,+D- If
dt p az (pv q ) qr ( )
-0,
Buoyancy: B = g[T + €(q, - qu,) L q,} , (2)

didt = 0/0t + v-V |

The subgrid-scale diffusion terms (last terms on rhs: D above) are all zero in babyEULAG.
Thus 1s 1n the spirit of the implicit large-eddy simulation (ILES) for small-scale dynamics.




DYNAMICS:

dv
—_—=— B .
dt Vr tk Dynamics

V(pv) =0 (fluid flow)

v=(u,vw) — fluid flow;

7 — perturbation pressure: ensures that the flow 1s anelastic:

B — buoyancy (density temperature perturbations driving the flow)

P = p(z) — anelastic density profile (the only effect of compressibility)

THERMODYNAMICS:
de I8,
I o7 (Ci—E)) potential temperature
ple :
ﬂ =_-C,+E - water vapor mixing ratio (m.r.)
dt o r )
drc =C -4, -G cloud water (condensate) m. r.
dg, 1 0 _ . e
‘== (Gug,) + A, + C, — E - rain (precipitation) m.r.
a5 oz (pvg;)

C, - condensation rate; g, --> q,

E, - precipitation evaporation rate; g, --> g,
A, - autoconversion rate; g, > g,

C, - collection rate; g+ q,--> g,

condensate — follows the flow (no sedimentation)
precipitation — falls out (15 term on rhs represents sedimentation)

NOTE: Significantly more complex microphysics parameterizations have been used with 3D
babyEULAG (see Grabowski JAS 2015, Grabowski and Jarecka JAS 2015, Grabowski and
Morrison JAS 2016).



BULK MODEL OF CONDENSATION:

D¢ L.6
E - C}TCJ
Dq(' '
pr ~ G
Dq.

pr = Ui

f) - potential temperature

¢ - water vapor mixing ratio

g. - cloud water mixing ratio

L, - latent heat of condensation/evaporation

(4 - condensation rate

Note:  6/T function of pressure only (= #6./T.. ie..
environmental hydrostatic pressure)

Cy4 is defined such that cloud is always at saturation, which is
a very good approximation:

=0 if g, < qus

G- >0 onlyif gq,=q.,

es(T')

where q,.(p. T') =~ 0.622 is the water vapor mixing ratio

at saturation



How these equations are solved?

First, the equations are converted from advective form to the flux (conservation) form:

Lagrangian versus Eulerian formulation

Px+uAt, y+vAL zewAt, +40) [T oV

wn S =8| T W VSS

combined with dry air continuity equation:

e
: =0
ot + v(f)au)
I ives:
o g Ol
YNz Pa ) —
4 4,2 {0 ‘ o1 + V[PaUI) puS

For the anelastic system:
ov
Jt

+ L9poun) = 5
Po

Po = Po(%)

Note that advective and flux-form formulations are equivalent. Thus, while the model solves
flux-form equations, one can apply the trajectory-wise thinking to design the numerical
algorithm.



Second. the integration scheme follows the non-oscillatory forward-in-time (NFT) applying the
trapezoidal (centered-in-time) integration. This can be schematically written as (Grabowski and
Smolarkiewicz MWR 1996, Eqs. 6 and 7):

ﬂ_ ntl 1 1 n+
d'—F — Y] -(¢+5A1F) +§A1F.

0

n—time level

i = position on the grid (shorthand for i,j, k)

subscript , — value at the departure point (X,, ") arriving at
the grid point (X;, #"*').

'l':”l Ff’+'
(xi' tn+l)

W' F"4 (x,1")

model time step for all variables

V"

LAt ) | time
| |
—

n-1 n n+l/2  n+l

Yt = (4: +%ArF) +%A1F;'“

0

To move model fields from n to n+1 time level, advecting velocities
are needed at n+1/2 time level. This can be accomplished by various
methods. A simple one is to linearly extrapolate fluid velocities from
n-1 and n time levels. This is what babyEULAG does.

NOTE: See below more detailed discussion on how this implemented for momentum and
thermodynamic variables.



Model grid

All model variables are collocated as illustrated below. Note that there are model levels at the
surface and at the model top that helps impose boundary conditions.

babyEULAG 2D 4 by 4 grad

X -u, v, w, theta, qv, qc, qr,...; dimension of (nx,nz)

| dx |
k= I X | X | X | X | - MODEL TOP
| | | I |
| | | | | dz
| | | I |
k=3 | === Xmmmm | === X mm e | = X | e X e | =
| | | I |
| | I I I
| | I I I
k=2 | === Xmmmm | === X mm = | == X mmmm | = X |
| | | I |
| | I I |
| | I I |
k=1 | ==X e, GE EEy SRR -—== SURFACE



However. for advection, one needs to prescribe advective fluxes at the cell edges as this is how
MPDATA (Multidimensional Positive-Definite Advection Transport Algorithm) works. The C-

grid type 1s then used and flow velocities are derived at cell edges by appropriate averaging.

grid for advection (MPDATA)
U - horizontal advective velocity (uxa in the code); (nx+1,nz)
W - vertical advective velocity (uza in the code) ; (nx,nz+1)

k=55 o-———-W-——-0—--W-———0-——-W—=-u—p==—-W=——0
k= & X $ X $ X $ X $ ————— MODEL TOP
k=4 A————w————i————w————i W é W i
k=3 $ X $ X $ X $ X &
k=3 l—-—-w—-—-l-—-—w—-—-g W i W l
k=2 & X $ X $ X $ X 6
PR SRS SIS S S
=1 $ X $ X $ X $ X & —-—— SURFACE
k=1 l————w——-—i————w——-—i W é W g
i=1 i=2 i=3 i=4 i=5



k=5
k=4
k=4
k=3
k=3
=2
k=2
k=1

k=1

Boundary conditions

The code applies simple boundary conditions. In the horizontal, the domain 1s periodic, that is,
Y(i=1) = ¥(i=nx) for all fields. Note that the periodicity also implies that:

U(i=1) = U(i=nx) and U(i=nx+1) = U(i=2).

In the vertical. rigid lid conditions are used. These imply that the advective fluxes across the
surface and across the model top have to vanish. It follows that:

W(k=1) = -W(k=2) and W(k=nz+1)=-W(k=nz).

Note that these mean free-slip conditions for the horizontal momentum. If there are surface
fluxes (of temperature. moisture, or momentum), these are best added separately (e.g..in a
separate subroutine) and — if the vertical and horizontal resolution 1s insufficient to support
boundary layer eddies like in LES — distribute the flux in the vertical mimicking the action of the
eddies. For instance, the temperature flux varies approximately linearly with height in the
convective boundary and this observation can be used to distribute the surface flux in convective
situations.

o}
|
X U X U e MODEL TOP

o——W—0——-W—-0—W—-0—W—0

I
U

I I I I
X U X U X U X U

0——=-W-—==0—=-W-—==0=—=-W====0===-W--——0

X U X U x U Xx U
VR SV VI SV
X ll.l X LIJ X l|J X lIJ ——— SURFACE
--w—--—<|> W— i W <|>—--—w—-——(|>




More details about time stepping.

For the momentum, the time stepping 1s exactly as explained above. Note that thermodynamics 1s
completed before momentum equations are finalized. Thus, thermodynamic variables are

available to calculate buoyancy at n+1 time level. The pressure gradlent term 1s calculated last to
ensure the “nondivergent” final flow. If u* represents u at n+1 time level that includes all sources
at n+1 level except for the pressure gradient term (1.¢.. buoyancy alone when only buoyancy and

pressure gradient are considered as in 1a) and u stands for the final solution. then:

u—u*= —At/2 Vn

Applying the anelastic continuity equation to u gives:

V(pou) = V[po (u* —At/2 V”)] =
This leads to the Poisson equation for the pressure field at the n+1 time level.
Note that if other terms are included in the momentum equation (e.g. the Coriolis force, surface

fluxes) these need to be included through an un-centered in time approach, that is, as
precipitation processes in the thermodynamics (see below).



For the thermodynamics, finding the forces due to precipitation processes at n+1 time level in the
trapezoidal rule is cumbersome. One can use the predictor-corrector technique to do this, but
because precipitation processes typically involve significantly longer time scale (say, tens of
minutes), then an un-centered in time (Euler forward) time stepping 1s a sensible approach. This
1s what babyEULAG does. The thermodynamic equations are then written as (Grabowski and
Smolarkiewicz MWR 1996):

day
=F"+ F?,
dt
where superscript F refers to “fast forces™ (like the condensation rate, infinitely fast in the bulk

approach) and S refers to “slow forces™ (1.e., those involved in precipitation formation and
growth). Treating fast and slow forces through centered and un-centered in time gives:

Yt =g+ AtF + % AtF' ) + % AtF]

0

Note that in the code, the fast and slow tendencies are group together. Slow tendencies need to
be multiplied by 2 to account for 1/2 coefficient when applied before advection.

Final comment concerns precipitation sedimentation, the first term on rhs in Eq. 1f. It 1s included
by a modification of the advecting vertical velocity, that 1s. by adding the precipitation fall
velocity to the advective flow v elocity. Since the fall v eloc1t5 is calculated applying precipitation
mixing ratio derived using an un- ~centered scheme, the precipitation sedimentation 1s calculated
in the spirit of the un- —centered in time scheme as well.



Explanation of the initialization in babyEULAG
Before entering the time-stepping loop ("MARCH FORWARD IN TIME"). the program sets the

vertical grid (° ‘call zstrtch™). initializes moisture parameters (“call mo1st_init ) and mnitializes
initial profiles (dry base-state, th0, rhe0; and moist environmental profiles,
th_e. qv_e. tm_e as well as initial velocity profiles, ux_e and uy_e). Then the model sets initial

3D fields that may include random perturbations or an initial localized perturbation, like a bubble
(the loop after “mitial fields™).



The time stepping starts with a call to velprd_1. This 1s the velocity predictor. Since MPDATA
requires “n+1/2" time level velocities, these are extrapolated in time from “n-1" and “n” time
level data (this 1s why the two level velocities are kept in the code). Note also that these
velocities need to be interpolated in space to get them at cell edges (as required by the MPDATA
advection routine) and multiplied by the air density. Finally, they are converted into “Courant
numbers”. These are uxa. uya and uza variables used 1n calls to mpdata. See velprd_1 for

details.

Before calling mpdata, “n” time level velocities are mnto “n-1" velocities (loop below “save
previous velocities”). Then some of the physics routines are called (e.g.. surface fluxes, large-
scale subsidence, etc). Note that tendencies in those routines are multlphed by 2 so they can be
multiplied by dt/2 (rather then by dt) when they are included in the new time level calculations

(the loop below “add half of the force™).

Advection 1s performed by calls to mpdata. Variables that move with the air (momenta, theta, qv,
and qc) are advected by uxa, uya, uza. Variables that move relative to the air (¢.g., qr), are also
advected by uxa and uya, but the vertical component of the advection velocity 1s - modified to
include fall velocity. This is done in a call to rain_fall that modifies uza. Additional comment is
needed for the “liner” variable set just prior to calls to mpdata. This variable forces mpdata to
complete just upwind advection. and it 1s typically done every a few model timesteps (say. every
6 timesteps) to provide additional smoothing of the advected fields. The model should run fine
even without this option (e.g., liner=0 all the time).



After advection, the advecting velocities are no longer needed and they are used to temporary
store velocity components (with partial forcings) after advection that are needed to calculate
velocity forces once the new pressure is derived. See the loop below “save velocities after
advection”.

Having new thermodynamic fields (except for fast tendencies at “n+1" time level, just
condensation in our case) allows calling thennod) namics routine, thermo. It does two things: 1)
it completes the saturation adjustment at “n+1" time level (“condensation/evaporation” loop at
the top of thermo). After that, all thermodynamic fields are already updated to the "n+1" time
level because precipitation processes are calculated to the first order in time. So the new
tendencies for slow (precipitation) processes can then be calculated (the loop “compute moist
forces update™; loop 300 in thermo). And they are multiplied by 2 so they can be included in the
same way as other forces (1.¢.. ...+dt/2*force) before advection in the next timestep.

With new thermodynamic variables updated in thermo. new buoyancy is calculated in a loop
below “add buoyancy”. Note that previous time level buoyancy (as well as the pressure gradient
force) have been already included before advection, so the buovancv tendency 1s calculated by
dt/2 for the centered in time integration (the loop below “apply™).



At this stage. the only thing left is to calculate the new pressure to ensure that final velocities are
divergence-free [1.e.. div(rho_0 u)=0 to be exact]. This 1s done in calls to gerk_2 and pforc_2.
The fx. fy. and fz variables on exit from pforc_2 contain adjusted velocities. Having updated

velocities at “n+1" time level and saved advected velocities that include forces from the “n™ time

levels allows calculation of the new velocity forces in the loop below “calculate velocity forces™.

At this stage. all model variables are at “n+1" time level, calculation clock 1s advanced by dt, and
the time step 1s completed.

Saving the data and the graphics

At the moment, the data from the simulation (3D snapshots) are written to an unformatted tape
(fort.17). In some versions/simulations, surface precipitation is also written 1nto another tape — it

1s averaged in time using every time step data and written out as the average over past number of
time steps.

There 1s also a simple graphics output prepared using NCAR Graphics (“call plot_1" and “call
plot_2"). If you prefer to use some other way of visualizing the results, you may simply save the
data in a different way (say, using the netCDF format) and apply different graphics software
(say. ncview for a quick look at the data). The 2D version of the code has netedf output added

thanks to the help of ICTP’s Fabien Solmon (fsolmon@ictp.it)



Time to look at and run the code...



