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Clouds in General Circulation models=GCMs

¢ GCMs describe the
equations of motion on
a discrete grid

¢ E.g. ECMWF global
forecast model with
171280 spectral
resolution (~9km
equivalent) with 137
vertical levels

¢ Many processes occur
on scales smaller than
this

o
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Clouds in GCMs - What are the problems ?

Clouds are subgrid-scale

(both horizontally and vertically)
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Clouds in GCMs: The aim

Cloud/no cloud?

Ice/liquid, amount, crystal size/shape...%

= To represent the “important”
characteristics of clouds with the
smallest number of parameters
... possible (= parametrization task)
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How can we describe clouds? Which characteristics?

VERTICAL COVERAGE
Most models assume that this is 1

This can be a poor assumption with coarse vertical grids.
Many climate models still use fewer than 30 vertical levels
currently, some recent examples still use only 9 levels

W T~

X ~100km
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How can we describe clouds? Which characteristics?

HORIZONTAL COVERAGE, C
Spatial arrangement?

WwO0S~

X ~100km
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How can we describe clouds? Which characteristics?

VERTICAL OVERLAP OF CLOUD
Important for Radiation and Microphysics Interaction

~100km
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Overlap approaches
Solar Zenith Effects

Cloud overlap parametrization

e Even if can predict cloud fraction versus height, cloud
cover (and hence radiation) depends on cloud overiap
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e Observations (Hogan and Illingworth 2000) support
“exponential-random overlap”:
— Non-adjacent clouds are randomly overlapped
— Adjacent clouds correlated with decorrelation length ~2km
— Many models still use “maximum-random overlap” 10 20 30 40
X (km)
A. M. Tompkins and F. Di Giuseppe. Generalizing cloud overlap treatment to include solar zenith angle
effects on cloud geometry. J. Atmos. Sci., 64:2116-2125, 2007

A. M. Tompkins and F. Di Giuseppe. An interpretation of cloud overlap statistics. J. Atmos. Sci., 72:2877-
2889, 2015

F. Di Giuseppe and A. M. Tompkins. Generalizing cloud overlap treatment to include the effect of wind
shear. J. Atmos. Sci., 72:2865-2876, 2015
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How can we describe clouds? Which characteristics?

IN-CLOUD INHOMOGENEITY
In terms of cloud particle size and number

~100km
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Macroscale Issues of Parameterization

Just these issues can become a little complex!!!

WwO0S~

A ~100km
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This talk will concentrate on how GCMs represent
horizontal cloud cover, C

Talk Outline:

1. Simple diaghostic schemes
2. Statistical schemes

3. The current ECMWEF scheme
4. Complications with ice

Cloud cover and Overlap 11



(CTP)

Firstl Some assumptions:

,= water vapour mixing rafio

.= cloud water (liquid/ice) mixing ratio

.= saturation mixing ratio = F(T,p)

.= total water (vapour+cloud) mixing ratio
RH = relative humidity = q,/q,

O
C
C
O

(#1) Local criterion for formation of cloud: q,> q_

This assumes that no supersaturation can exist
(#2) Condensation process is fast (cf. GCM timestep)

d,= s 9= 9;— ]
lIBoth of these assumptions are suspect in ice clouds!!
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Partial coverage of a grid-box with clouds is only
possible if there is a iInhomogeneous distribution of
temperature and/or humidity.

Homogeneous
Distribution of water
vapour and temperature: ‘

Note in the
second

case the 4
relative /7777777777777 ;

humidity=1
from our
assumptions

One Grid-cell
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Heterogeneous distribution of T and q

cloudy= <>

Another implication of the above is that clouds must exist
before the grid-mean relative humidity reaches 1.
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The interpretation does not change much if
we only consider humidity variability

Throughout this talk | will neglect temperature variability

In fact : Analysis of observations and model data indicates
humidity fluctuations are more important
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#1 Simple diagnostic schemes: RH-based schemes

RH=60%

Take a grid cell with a certain (fixed)
distribution of total water.
At low mean RH, the cloud cover Is
zero, since even the moistest part of
the grid cell is subsaturated
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#1 Simple diagnostic schemes: RH-based schemes

RH=80%

=S

Add water vapour to the gridcell,
the moistest part of the cell
become saturated and cloud
forms. The cloud cover is low.
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#1 Simple diagnostic schemes: RH-based schemes

RH=90%

Further increases in RH
Increase the cloud cover

Cloud cover and Overlap 19



#1 Simple diagnostic schemes: RH-based schemes

RH=100%

The grid cell becomes
overcast when RH=100%,
due to lack of supersaturation
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#1 Simple Diagnostic Schemes:
Relative Humidity Schemes

¢ Many schemes, from the
1970s onwards, based
cloud cover on the relative
humidity (RH)

¢ e.g. Sundgvist et al.
MWR

_ 1—RH
C=1- PR

crit

RH

= critical relative humidity at which

cloud assumed to form
(function of height, typical value is 60-80%)

crit
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Diagnostic Relative Humidity Schemes

¢ Since these schemes form cloud when
RH<100%, they implicitly assume subgrid-
scale variability for total water, q;, (and/or
temperature, T) exists

¢ However, the actual PDF (the shape) for
these guantities and their variance (width)
are often not known

¢ “‘Given a RH of X% in nature, the mean
distribution of g, Is such that, on average,

we expect a cloud cover of Y%”
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Diagnostic Relative Humidity Schemes

¢ Advantages:

Better than homogeneous assumption, since
clouds can form before grids reach saturation

¢ Disadvantages:

Cloud cover not well coupled to other
processes

In reality, different cloud types with different
coverage can exist with same relative humidity.
This can not be represented

¢ Can we do better?
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Diagnostic Relative Humidity Schemes
¢ Could add further predictors

Cloud water mixing ratio

¢ E.g: Xu and Randall (1996)
sampled cloud scenes from a
2D cloud resolving model to
derive an empirical relationship
with two predictors: .

¢ More predictors, more degrees of freedom=flexible
¢ But still do not know the form of the PDF. (is model valid?)

¢ Can we do better?
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#2: Statistical Schemes

¢ These explicitly

specify the probability
density function (PDF) M /@\

for the total water g,

(and sometimes also

temperature) '

Cloud cover is
integral under
supersaturated

part of PDF
—
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#2: Statistical Schemes

¢ Knowing the PDF
has advantages

More accurate
calculation of
radiative fluxes
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Statistical schemes

¢ Two tasks: Specification of the:
(1) PDF shape
(2) PDF moments

¢ Shape: Unimodal? bimodal? How many
parameters?

A A A

¢ Moments: How do we set those parameters?

A |
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TASK 1: Specification of the PDF

¢ Lack of observations to determine g, PDF

Aircraft data
limited coverage

Tethered balloon modis image from NASA website
boundary layer o e

Satellite

difficulties resolving in vertical
no g, observations

poor horizontal resolution

Raman Lidar
only PDF of water vapour

¢ Cloud Resolving models have also been used
realism of microphysical parameterisation?
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PDF Data

ulus (a209r2.4) Skewness=-0.14 Altitude=24. m

P(s) (kag)

More examples
from Larson et al.
JAS 01/02

Ps) [kag")

Note significant
error t_hat can__,
occur If PDF Is
unimodal

=1
=
22,
[

Pls) [kag"]

Conclusion: PDFs are mostly approximated by uni or bi-
modal distributions, describable by a few parameters
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TASK 1: Specification of PDF

Many function forms have been used
symmetrical distributions:

= A

Uniform: Triangular:
Letreut and Li (91) Smith QJRMS (90)
Gaussian: s* polynomial:
Mellor JAS (77) Lohmann et al. J. Clim (99)
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TASK 1: Specification of PDF

skewed distributions:

@ A A

Exponential: Lognormal: Gamma:
Sommeria and Deardorff Bony & Emanuel Barker et al. JAS (96)

IAS (77) JAS (01)

Beta: Double Normal/Gaussian:

Tompkins JAS (02) Lewellen and Yoh JAS (93), Golaz et al.
JAS 2002

Cloud cover and Overlap 33




TASK 2: Specification of PDF moments

¢ Need also to determine the
moments of the

distribution: saturation
Variance (Symmetrical
PDFS) cloud forms~

o

Skewness (Higher
order PDFs)

Kurtosis (4-parameter e.g. HOW WIDE?
PDFs)

0,

Skewness Kurtosis

Moment 1=MEAN

Moment 2=VARIANCE negative

Moment 3 =SKEWNESS
Moment 4=KURTOSIS
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TASK 2: Specification of PDF moments

¢ Some schemes fix the
moments (e.g. Smith
1990) based on
critical RH at which
clouds assumed to
form —

q qt qs
skewness) are fixed, _ ¥ _
then statistical qV_CqS+< 1-C)g,

schemes are (1 (1 RH_. )(
identically equivalent
to a RH formulation )(1
¢ e.g. uniform g,
distribution = C=1- 1—RH

Sundqvist form Sundqvist formulation!!! 1=RH crit
Cloud cover and Overlap

(1 -RH cri) ds
< >

N
]

¢ If moments (variance,
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Clouds iIn GCMs
Processes that can affect distribution moments

convection

TS

turbulence

U

Cloud cover and Overlap
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Example: Turbulence

In presence of vertical gradient of total water,
turbulent mixing can increase horizontal variability
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Example: Turbulence

In presence of vertical gradient of total water,
turbulent mixing can increase horizontal variability

while mixing in the horizontal plane naturally
reduces the horizontal variability

Cloud cover and Overlap 38



(CTP)

Specification of PDF moments

l*’ turbulence

RS

If a process is fast

compared to a GCM timestep,
an equilibrium can be
assumed, e.g. Turbulence

local
equilibrium
—

Source dissipation

Example: Ricard and Royer, Ann Geophy, (93), Lohmann et al. J. Clim (99)

¢ Disadvantage:

Can give good estimate in boundary layer, but above, other
processes will determine variability, that evolve on slower timescales
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Prognostic Statistical Scheme

¢ Tompkins (2002) o
iIntroduced a ¢ Onie GCM gridcell _ PDF

prognostic statistical clotidy

scheme into ECHAMS &

climate GCM onvective
¢ Prognostic equations [N . de"ammem

are introduced for the

Cc

precipitation

variance and (c) l@ian

AL,

skewness of the total T| -
@ mixing

water PDF (d)

¢ Some of the sources q.
and sinks are rather
ad-hoc in their

derivation!
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Scheme In action

Cloud Cover
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Scheme In action
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Scheme In action
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Summary of statistical schemes

¢ Advantages

Information concerning subgrid fluctuations of humidity
and cloud water Is available

It is possible to link the sources and sinks explicitly to
physical processes

Use of underlying PDF means cloud variables are
always self-consistent

¢ Disadvantages

Deriving these sources and sinks rigorously is hard,
especially for higher order moments needed for more
complex PDFs!

If variance and skewness are used instead of cloud
water and humidity, conservation of the latter is not
ensured
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ECMWEF Scheme
Tiedtke MWR 1993

¢ The ECMWEF cloud scheme introduces two
prognostic equations for cloud water and cloud
cover

¢ As for the prognostic statistical scheme, each
process of convection, turbulence, microphysics
and dynamics provides sources and sinks of these
variables

¢ These terms are often derived assuming a
subgrid-scale distribution of total water

¢ Effectively a “variable transformation”
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Example: (a)diabatic heating/cooling

cooling

ECMWEF PDF is
(mostly)
Uniform: in clear
sky part

Delta: in cloudy
part

Red-hashed area is the change in cloud
fraction due to cooling, this is added to the
cloud cover budget
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Advantages

¢ Some terms are easier to handle with a simple
cloud cover variable

¢ e.g. Convective detrainment:
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Disadvantages

¢ Not all terms are
derived using PDF
assumptions,
therefore easy for
scheme to render
unreasonable states.

Cloud water g, = 0,

Cloud cover C >0 or
vice versa

Cloud variables are
like a celebrities...

Cloud cover and Overlap
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Disadvantages
-l
" vt N

1?

ol '.r_l!-f-m
L 1 Wl

¢ Not all terms are
derived using PDF
assumptions,
therefore easy for
scheme to render
unreasonable states.

Cloud water g = 0, ...they don't stay
Cloud cover C>0o0r together very long!!

vice versa “ i

b
.
¥
’ |8

vl |

Cloud variables are
like a celebrities...
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Disadvantages

¢ Loss of “memory” in clear sky or overcast
conditions; scheme Is not “reversible”.

e.g: RH=80%, C=0, q.=0

narrow distribution?
(clear long time?)

wide distribution?

A A
U U
) O
L -
O O
qt qs qt qs
Cloud would form with small cooling! ...but not in this case!

Cloud cover and Overlap 51



#4 Ice
complications




lce complications

¢ Due to relative lack of ice
nuclel in the atmosphere,
supersaturation with
respect to ice is common!

Threshold for ice nucleation
IS not
Liquid clouds do not
glaciate at 0-C
¢ Nucleation and 100%
sublimation timescales are
not necessarily fast st i o et s

compared to a GCM b Krher
Deutsches Zentrum fiir Luft- und Raumfahrt, Institut fiir Physik der Atmosphire, Oberpfaffenhofen, Germany
= J. Lohmann
tl I I l eSte p e p e n S O n I Atmospheric Science Program, Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada

time
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lce complications

¢ Due to relative lack of ice
nuclel in the atmosphere,
supersaturation with
respect to ice is common!

Threshold for ice nucleation
IS not

Liquid clouds do not
glaciate at 0-C

¢ Nucleation and
sublimation timescales are /
not necessarily fast Typical GCM
compared to a GCM No supersaturation
timestep (depends on N;)

time

ECMWEF current operations
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lce complications

¢ Due to relative lack of ice
nuclel in the atmosphere,
supersaturation with
respect to ice is common!

Threshold for ice nucleation
IS not gs

Liquid clouds do not
glaciate at 0-C

¢ Nucleation and
sublimation timescales are
not necessarily fast

Threshold allowed
compared to a GCM but no nucleation timescale

timestep (depends on N;)

ECMWEF 2006!!!
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Simple ECMWEF scheme: comparison to Mozaic aircraft data
Region Lat30./70., Lon:0./360.

default

clippin Koop
new para rrg%l%ﬁh on
K

/ " New scheme
Default * 2006

| +,

1.0

Cloud cover and Overlap



lce complications

¢ Due to relative lack of ice
nuclel in the atmosphere,
supersaturation with
respect to ice is common!

Threshold for ice nucleation
IS not gs

Liquid clouds do not
glaciate at 0-C
¢ Nucleation and
sublimation timescales are
not necessarily fast
Compared to a GCM full Scheme, nice
timestep (depends on N) but requires. .
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requires... more prognostic parameters!!!

clear area: q,

cloudy area: N;, q,, q;

o
e
e i
T A
R e e e e L e P L FLE
R
e e
e R

plus cloud fraction, C

¢ g, needed separately in and out of cloud since

nucleation only affects cloudy area, while
supersaturation in both regions is allowed

¢ Calculation of C requires knowledge of process!
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Statistical scheme framework, identical considerations!
4 qs CIcrit

(b)dad

_

supersaturated
qcloud

clear region

cloudy “activated”
region

(CTP)



Also, equation for cloud
Jce no longer holds

q# | (q.~q,)PDF|(q,)dg,
q

If assume fast adjustment,
derivation is straightforward

a= | (q,-q,)PDF(q,)dg,

qcloud

Much more difficult if want to
Integrate nucleation equation
explicitly throughout cloud

qg.= 7"

l



The Future?

¢ Future development at ECMWEF is likely to take
the form of a hybrid scheme

¢ Prognostic equations for q,, gi/q;, q; variance of g,
but also C

¢ There is no redundancy between these variables
If supersaturation is allowed

¢ However, writing sources terms self-consistently
for these vay ' Iffi
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And what about mixed phase clouds?

¢ Rotstayn MWR (2000) — How would this be
represented in a PDF framework?

Horizontally adjacent Uniformly mixed

A A A A A A
L A A A A
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~ ~mixed ice and’
,  liquid water ,
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~by vapor deposition.),
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FiG. 2. Schematic illustration of the spatial relationship of cloud ice and cloud liquid water when using the
horizontally adjacent and uniformly mixed assumptions.
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Conclusions

¢ Partial cloud fraction is a result of thermodynamic
variability on the subgrid-scale

¢ Any scheme that gives partial cloud cover makes
iImplicit or explicit assumptions about fluctuations

¢ Explicit: Statistical schemes, with full “memory” of
subgrid g; state; useful info for other schemes

¢ But, assumption of no supersaturation is not good
In ice phase

¢ Future schemes could be hybrid, combining cloud
cover C with statistical approach to model ice
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