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Presentation Outline

üIntroduction and general concepts
üEmpirical evidence of site effects
üLinear site response
üNonlinear site response
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Introduction and General 
Concepts
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Site Response
• Observed Records  =  (Source) + (Path) + (Site)

Assumption 
• Site response is Linear
• Source effects are common to each recorded data
• Path effects are common to all recorded data 
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Grenoble example, France

ØComplex geology (3D)
ØMountain basin
ØFluvial deposits
ØGlacial deposits
ØImportant urban 
development
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üAmplification of 
the ground motion

üIncrement of the 
signal duration

üGround motion 
variability

Surface observations of site effects
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San Francisco Bay 
(USA)
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Garner Valley - 
USA
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Site effect definition

Input signal 
(bedrock)

Output signal
(sediment)

Soil deposit

Site effect = Output / Input (deconvolution)
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Site response quantification

•The response is broadband
•The mean value is stable
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Site effects

ØDefinition: Influence of local geology on 
the seismic wave propagation. Site 
response is measured using the so-called 
transfer function

ØLinear site effects: the transfer function 
is independent of the input

ØNonlinear site effects: strong feedback 
between the input and the medium

Engineers design earthquake resistant structures 
including site effects (if present)
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Empirical Evidence of Site 
Effects
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Northridge M6.7, 1994 (USA)
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Kobe M6.9, 
1995 Japan

• Near source effects
• Site effects
• Bad design
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Theoretical Computation of 
Site Response
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Site	
  effects	
  -­‐	
  physical	
  basis
Effect	
  of	
  the	
  local	
  geology	
  on	
  the	
  ground	
  mo9on

– Refrac9on,	
  diffrac9on,	
  focaliza9on
– Trapped	
  waves

• ver9cal	
  reverbera9ons
• horizontal	
  reverbera9ons

Consequences
– Construc9ve	
  interference:	
  amplifica9on	
  
– Trapped	
  waves:	
  increase	
  of	
  the	
  seismic	
  dura9on
– Resonance	
  of	
  fundamental	
  and	
  harmonic	
  modes

! + nonlinear soil behavior !

Bard	
  (2006)
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Where	
  does	
  the	
  amplifica9on	
  come	
  from?
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2)	
  2D	
  /	
  3D	
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Lateral	
  reverbera9ons
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ρ2 , β2, ζ2

ρ1 , β1, ζ1

Bard	
  (2006)

Broadband	
  effect
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Simplified Computation (1D)

HV1, ρ1

V2, ρ2

Soil

Rock

Amplification

Resonance Frecuency
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Classical Effects

New Effects (Taiwan)

Why do we have site effects?
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Empirical estimation of site effects
Spectral ratios (earthquakes) H/V (noise)

Resonance frequencies and related soil amplification 
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Site effects in complex media 
(movies)
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Site Effects and Urban 
Planning
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10 stories

T= 0,2 s

T= 1,2 s

T= 6,5 s

A structure has a fundamental period of vibration
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Amplification: Los Angeles at T=3s

26



Soil Classification
Ground Type Parameter Vs30 

(m.s^-2) [EC8]
A >800
B 360 – 800
C 180 – 360
D <180
E C or D layer, 

underlain by stiffer 
material with 
Vs>800 m.s^-2

Vs : average shear wave velocity in the first 30 meters
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Site Response and Ground 
Motion Attenuation
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Chi-Chi M7.2, 1999 (Taiwan)
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PGA – Distance Distribution
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PGA – Distance Distribution
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Nonlinear Site Effects

31



Chi-Chi M7.2, 1999 (Taiwan)

Formation of a waterfall: 8 m
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Chi-Chi 
M7.2, 1999 
(Taiwan)

Vertical displacement
(~10 m) of the dam
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Chi-Chi M7.2, 1999 (Taiwan)
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Chi-Chi, Taiwan, 2000Tottori, Japan 2001

Examples of 
landslides
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Liquefaction examples (free field)
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Liquefaction of the soil foundation
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Soil liquefaction of the bridge’s 
soil foundation 
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Kobe: Jan. 1995, M6.9

Vertical Settlement

Lateral Spreading
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Hysteresis model

Backbone

Initial
loading
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Hysteresis model

Backbone

Initial
loading
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Hysteresis model

Backbone

Initial
loading

Unloading
branch
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Hysteresis model

Backbone

Initial
loading

Unloading
branch
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Hysteresis model

Backbone

Initial
loading

Reloading
branch

Unloading
branch
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Modulus degradation and damping 
curves

ØThe shear modulus decreases 
for increasing deformation 
levels

ØThe damping increases 
proportionally to the 
deformation

G
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How is the transfer function affected?

üDeamplification: the damping increases (pay 
attention)

üIncrease of the signal duration (long period 
waves arrive later)

1. The shear modulus is computed as G=ρβ2

2. The fundamental frequency of the soil is f0=β/(4H)
3. If G changes, so does β : 
      if G(-) ---> β(-) ---> f0(-)

42



The effect of depth
Initial conditions

More nonlinearity at 
shallow depths

More linear at depth

σx

σy
σy0 = ρ H g
σx0 = K0 σy

σm0 = (2σx0+σy0)/3
τmax = σm0 sin(φ)

G/Gmax
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Numerical solution
Why?

ØThere is no analytical solution
ØFinite differences, spectral elements, finite 

elements methods
Boundary conditions:

Ø Surface: free surface effect
ØBedrock: elastic boundary conditions 

(transmitted waves) or rigid boundary 
conditions (complete reflection)
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Nonlinear Effects: TTRH02 Station (Japan)

Site amplification is different for strong ground motion
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 Why do we 
have this 

difference?

Load duration

Deformation amplitude

Note that we do not make any difference between large or small events
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EPRI modulus reduction and 
damping curves
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