
NOAH: User’s Manual

Luis Fabián Bonilla(1,2)

(1) Institute for Crustal Studies, University of California, Santa Barbara, USA

(2) Institut de Radioprotection et de Sûreté Nucléaire, France

1 Introduction

NOAH is a NOnlinear Anelastic Hysteretic finite difference code, which com-

putes the nonlinear wave propagation in water saturated soil deposits sub-

jected to vertically incident SH ground motion. The constitutive equation

implemented in this code corresponds to the strain space multishear mecha-

nism model developed by Towhata and Ishihara (1985) and Iai et al. (1990).

The code is able to perform total and effective stress analyses. The current

rheology works particularly well to model the cyclic mobility of sands under

undrained conditions. In the following, a simplified summary of the theory

implemented in NOAH will be explained. In addition, worked examples will

be given so that the user will become familiar with the capabilities of this

code.

2 Review of Hysteresis, Pore Pressure,

and Wave Propagation Models

The propagation of seismic waves directly depends on the mechanical prop-

erties of the material were they travel through. To study and understand

the phenomenology of nonlinear soil response to earthquakes, we have devel-

oped a numerical model that captures the essential physics of nonlinearity in

soils. The model formulation includes nonlinear effects such as anelasticity

and hysteretic behavior, and pore pressure generation.
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2.1 The Generalized Masing Rules

There have been several attempts to describe the stress-strain space of soil

materials subjected to cyclic loads, and among those models the hyperbolic

is one of the easiest to use because of its mathematical formulation as well as

for the number of parameters necessary to describe it (Hardin and Drnevich,

1972b; Pyke, 1979; Ishihara, 1996; Kramer, 1996; Beresnev and Wen, 1996).

In the hyperbolic model, the nonlinear relation is given by the following equa-

tion,

G

G0

=
1

1 + | γxy

γref
|

where γref = τ0/G0 is the reference strain, G0 is the undisturbed shear mod-

ulus, and τ0 is the maximum shear stress that the material can support in

the initial state.

Introducing the equation above into τxy = Gγxy, where τxy is the shear

stress and γxy is the shear strain; and adding the hysteresis operator, we have

τxy = Hys(Fbb)

Fbb = τ0

γxy

γref

1 + | γxy

γref
|

where Fbb is the backbone curve, and Hys(.) is the hysteresis operator (ap-

plication of the generalized Masing rules). Figure 1 shows the meaning of the

symbols describing the model.

Hysteresis behavior can be implemented with the help of the Masing and

extended Masing rules (Vucetic, 1990; Kramer, 1996). However, these rules

are not enough to constrain the shear stress τxy to values not exceeding the

strength τ0. This happens when the time behavior of the shear strain departs

from the simple cyclic behavior, and of course, noncyclic time behavior is

common in seismic signals. Inadequacy of the Masing rules to describe the
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Figure 1: Hyperbolic model of a stress-strain curve for a soil under cyclic
loads. The thick line shows the backbone curve and represents the hyperbolic
model. The loading and unloading branches have also the same shape but
translated as described by the Masing rules. The slope of the solid straight line
is G0, and for large strains the stress goes to τ0. The pair (γr, τr) represents
the point where the path reverses from loading to unloading.

hysteretic behavior of complicated signals has been already pointed out and

some remedies have been proposed (e.g., Pyke, 1979; Li and Liao, 1993).

The Masing rules consist of a translation and dilatation of the original

law governing the strain-stress relationship. While the initial loading of the

material is given by the backbone curve Fbb(γxy), the subsequent loadings and

unloadings, the strain-stress relationship is given by:

τxy − τr

κH

= Fbb(
γxy − γr

κH

)

except when the extended Masing rules are applied. The coordinate (γr, τr)

corresponds to the reversal points in the strain-stress space, and κH is the

so-called hysteresis scale factor (Archuleta et al., 2000). In Masing’s original

formulation, the hysteresis scale factor κH is equal to 2. A first extension to

the Masing rules can be obtained by releasing the constrain κH = 2 . This

parameter controls the shape of the loop in the stress-strain space (Bonilla

et al., 1998). However, numerical simulations suggest spurious behavior of
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τxy for irregular loading and unloading processes even when extended Masing

rules are used. A further generalization of Masing rules is obtained choosing

the value of κH in such way to assure that the path τxy, at a given unloading

or reloading, in the strain-stress space will cross the backbone curve, and

becomes bounded by the maximum strength of the material τ0. This can be

achieved by having the following condition,

lim
γxy→sign( ˙γxy) |γf |

κHj
Fbb(

γxy − γrj

κHj

) |γrj
| ≤ |γf | ≤ |∞|

where γf is the specified finite or infinite strain condition, γrj
and κHj

corre-

spond to the turning point and the hysteresis shape factor at the jth unloading

or reloading; and sign( ˙γxy) is the sign of the strain rate. Thus,

sign( ˙γxy)|τf | = lim
γxy→sign( ˙γxy) |γf |

κHj
Fbb(

γxy − γrj

κHj

) + τrj

where |τf | = Fbb(|γf |), and (γrj
, τrj

) is the turning point pair at the jth rever-

sal. Replacing the functional form of the backbone (the hyperbolic model)

and after some algebra we have,

κHj
=

(sign( ˙γxy)|τf | − τrj
)|sign( ˙γxy)|γf | − γrj

|
τ0(sign( ˙γxy)|γf | − γrj

)− γref (sign( ˙γxy)|τf | − τrj
)

|γrj
| ≤ |γf | ≤ |∞|

The equation above represents a general constraint on the hysteresis scale

factor, so that the computed stress does not exceed τ0 depending on the

chosen maximum deformation γf that the material is thought to resist. The

limit γf → ∞ corresponds to the Cundall-Pyke hypothesis (Pyke, 1979),

while γf = γrj
is similar to some extent to a method discussed in (Li and

Liao, 1993). The latter formulation presents extended Masing behavior and

it is the one implemented in NOAH by default.

An illustration of the behavior of the strain-stress curve is shown in Figure

2 for an irregular loading using the Generalized Masing rules and a backbone

curve described by the hyperbolic model.
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Figure 2: Example of computed stress time histories following the original
Masing rules (solid line), and the model proposed in this study (dash line).
Note how the original Masing rule produces that the stress exceeds the maxi-
mum strength of the material, in this case 1 kPa.

Hysteresis Damping of this Model

It has been customary to present the shear modulus reduction and the in-

creasing of damping as function of increasing shear strain as a measure of

the material nonlinearity (e.g. Hardin and Drnevich, 1972a). In general,

the energy dissipated per cycle ∆W and the damping ratio ξ are related as

(Ishihara, 1996; Kramer, 1996)

ξ =
∆W

4 π W

with the maximum stored energy is given by W = γr1 Fbb(γrj
) / 2. It is cus-

tomary to estimate the damping ratio from the first cycle of unloading and

reloading. Figure 3 shows the scheme to compute the damping ratio. The

energy dissipated per cycle, ∆W , is the area of the loop ̂ABCD; and the max-

imum stored energy, W , is the area of the triangle ÔAγr. The mathematical

definition of ∆W consists in integrating τ(γ) over a complete cycle,
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∆W =
∫ γr1

−γr1

τ(γ) dγ

which is equivalent to the integration of the first unloading curve from −γr1

to γr1 added to the integration of the first reloading curve from −γr1 to γr1 .

Where ±γr1 are the maximum and minimum values of the strain under cyclic

loading.
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Figure 3: Schematic representation that shows the computation of the damp-
ing ratio, ξ, as the ratio of the area of the loop ̂ABCD and 4π times the area
of the triangle ÔAγr.

Using this path integral for ∆W including the hysteresis operator and

effective hysteresis scale factor. Furthermore, recalling that the first unloading

and first reloading correspond to j = 1 and j = 2, we have after some

simplifications

∆W = κ2
H2

∫ 2γr1/κH2
0 Fbb(γ

′) dγ′ − 2 γr1 κH1 Fbb(
2γr1

κH1
)

+ κ2
H1

∫ 2γr1/κH1
0 Fbb(γ

′) dγ′

When the backbone curve is given by the hyperbolic model, the damping

ratio ξ becomes
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ξ = 1
2π

(1 +
γref

γr1
)(2(κH2 + κH1)− 4

(γref /γr1 )+(2/κH1
)

−(
γref

γr1
)[κ2

H2
Ln(

2γr1

κH2
γref

+ 1) + κ2
H1

Ln(
2γr1

κH1
γref

+ 1)])

where κH1 and κH2 can be obtained from equation that describes the hysteresis

scale factor. The equation for ξ provides a relation between the damping and

the fiducial point. This expression is complicated since ξ is a transcendental

equation of γf , and the inverse function γf (ξ) cannot be easily estimated.

However, it can be solved numerically. This means that the damping can be

controlled by chosing an appropiate value of γf based in experimental data for

instance. Finally, this equation reduces to the usual expression of damping

ratio when κH1 = κH2 = 2,

ξM =
2

π
[2(

γref

γr1

+ 1)[1− (
γref

γr1

)Ln(
γr1

γref

+ 1)]− 1]

where ξM is the damping ratio associated with the Masing rules (Ishihara,

1996).

Damping Control of the Hysteresis Loops

When the hyperbolic model is used, the damping ratio at large deformations

is close to 2/π. Experimental data show that maximum damping ratios are

between 30% and 40% depending on the material. Ishihara et al. (1985) de-

velopped a method to control this parameter by recomputing a new backbone

curve, which will follow a hysteresis path controlled by the required maximum

damping ratio.

Observing the equation for ξ in the previous section, we see that the model

depends on the fidutial point γr1 , the reference strain γref , and the values of

the hysteresis scale factors κH1 and κH2 . If we analyze one complete cycle for

a sine strain time history, we can say that κH1 = κH2 . Conversely, the value

of the fidutial point is computed depending on the stress reversals; thus, the

only ’free’ parameter is the reference strain.
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What Ishihara et al. (1985) did is to recompute the reference strain com-

patible with the level of deformation γr1 and damping ratio ξ. Once the new

reference strain is obtained, a new backbone is computed, which will follow

the hysteresis path that obeys a specified damping ratio.

As the reader can see, one may use empirical data for the damping ratio, if

available. However, for simplicity we have decided to use an analytical model

for the damping suggested by Hardin and Drnevich (1972b),

ξH =
γr1/γref

1.0 + |γr1/γref |ξmax

where ξmax is the maximum damping that the material may have at large

strains. We obtain the new reference strain by equating ξ = ξH . How does

this affect the new backbone curve?

Recall that the original backbone curve is expressed as,

τxy = τ0

γxy

γref

1 + | γxy

γref
|

this equation can be rewritten as,

τ =
γ

1 + |γ|

where τ = τxy/τ0 and γ = γxy/γref . Let a and b be the scaling factors for the

stress τ and strain γ, such as τ ′ = τ/a and γ′ = γ/b, respectively.

At the first reversal point, the pairs (γr, τr) and (γ′r, τ
′
r) are the same, this

means

τr =
γr

1 + |γr| and τ ′r =
γ′r

1 + |γ′r|

which can be rewritten as,
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τr =
γr

1 + |γr| and τr/a =
γr/b

1 + |γr/b|

solving these two equations for a,

a =
b + |γr|
1 + |γr|

From before, we wish ξ(γr1/b) = ξH(γr1). The numerical solution (i.e.

Newton-Raphson method) of this equation will provide the value of b. Once

the scaling factors are computed, the hysteresis operator looks like,

τxy − τr

aκH

= Fbb(
γxy − γr

bκH

)

Figure 4 shows an example of stress-strain loops when original Masing

damping is used (left), and when damping control is applied (right). NOAH

controls the damping only in layers where no pore pressure is computed.
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Figure 4: Example of stress-strain loops showing the effect of controlling the
hysteresis damping. On the left, the original Masing rules are used. On the
right, the generalized Masing rules with damping control are applied.
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2.2 The Strain Space Multishear Mechanism Model

The multishear mechanism model is a plane strain formulation to simulate

cyclic mobility of sands under undrained conditions. This formulation was

first implemented by Towhata and Ishihara (1985) to simulate pore pressure

generation in sands under cyclic loading and undrained conditions, and fur-

ther developed by Iai et al. (1990a, 1990b) to take into account the cyclic

mobility and dilatancy of sands. This method has the following advantages:

• It is relatively easy to implement, it has few parameters, and they can

be obtained from simple laboratory tests with pore pressure generation.

• Since the theory is a plane strain condition, it can be developed to study

problems in two dimensions, e.g. embankments, quay walls, among

others.

• The pore pressure built up is based on the correlation observed in labo-

ratory experiments where it depends on the cumulative shear work done

during the shaking mainly.

Model Formulation

The multiple mechanism model relates the effective stress and strain vectors

[σ′]T = [σ′x σ′y τxy]

[ε]T = [εx εy γxy]

through the following incremental equation

[dσ′] = Ka [n(0)] [n(0)]T ([dε]− [dεp]) +
I∑

i=1

R
(i)
L/U [n(i)] [n(i)]T [dε]

in which the volumetric strain increment [dεp] due to dilatancy is given by
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[εp]
T = [εp/2 εp/2 0]

The first term of the incremental equation represents the volumetric mech-

anism with the associated bulk modulus Ka, and the second part represents

the shear mechanism with the tangent shear modulae R
(i)
L/U . The shear mech-

anism is represented as a collection of multiple springs (the total number is

indicated by I), each following the hyperbolic stress-strain model (Figure 5).

The shear mechanism is also thought as a combination of pure shear and

shear by differential compression. Finally, the subindices L and U indicate

the loading and unloading processes, respectively, that follow the generalized

Masing rules.

External force F

Rigid Wall

Anelastic Springs

τxy
γxy

Θ

(σy'−σx')/2

εy−εx

Figure 5: Schematic figure for the multiple simple shear mechanism. The
plane strain is the combination of pure shear and shear by compression (after
Towhata and Ishihara, 1985).

The integrated formulation of the incremental equation is

σ′ = B[(εx + εy)− εp]
2n(0) +

I∑

i=1

Q(i)(γ(i))∆θn(i)
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where

n(0)T = [1 1 0]

n(i)T = [cos θi − cosθi sin θi]

∆θ = π/I

θi = (i− 1)∆θ

and

B = [0.5Ka/(σ
′
ma)

0.5]2

Q(i)(γ(i)) = [(γ(i))/γv)/(1 + |γ(i)/γv|)]Qv

γ(i) = (εx − εy) cos θi + γxy sin θi

Qv = τ0/(
I∑

i=1

sin θi∆θ)

γv = (Qv/G0)(
I∑

i=1

sin2 θi∆θ)

here τ0 is the shear strength, G0 is the shear modulus, Ka is the bulk mod-

ulus, and σ′ma is the reference effective confining pressure. In addition, the

volumetric strain produced by the pore pressure εp is implemented as

εp = (n/Kf )(σ
′
mo − σ′m)− (σ′m/B)0.5 + εε0

where n is the porosity, Kf is the bulk modulus of water, σ′mo is the initial

effective mean stress, σ′m is the effective mean stress at any given time (at

t = 0, σ′m = σ′mo), and εε0 is the initial volumetric strain produced by σ′mo as

εε0 = (σ′mo/B)0.5
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Initial conditions

The initial effective mean stress σ′mo is computed as

σ′mo = (σ′x0 + σ′y0)/2

where

σ′y0 = ρ′ g h

σ′x0 = K0 σ′y0

where ρ′, g, and h are the submerged density, gravity, and depth of the soil

element, and K0 is the coefficient of the earth at rest. The corresponding

strains are computed as

εε0 = εx0 + εy0

every time that σ′m is updated, the corresponding strains are computed with

the equations above.

Shear Work Correlation and Threshold Limit

Towhata and Ishihara (1985) based on laboratory data (Figure 6) wrote the

relationship for the total shear work as

dWst = [(σ′x − σ′y)/2]d(εx − εy) + τxydγxy

however, there is a correction to take into account that the pore pressure will

not be built up for all strain values (Iai et al., 1990a),

c1dWse = c1|τd(τ/G∗
m)|

G∗
m = G0 (σ′m/σ′mo)

0.5
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Figure 6: Correlation between the pore pressure build-up and the shear work
(after Towhata and Ishihara, 1985).

finally,

dWs = dWst − c1dWse

where τ = (τ 2
xy + [(σ′x − σ′y)/2]2)0.5, which is the total shear stress produced

by pure shear and differential stress, and c1 is a model parameter.

Liquefaction Front

The liquefaction front is an empirical approach to model the decrease of effec-

tive mean stress due to the increase of pore pressure (Towhata and Ishihara,

1985; Iai et al., 1990a), see Figure 7. The basis of this assumption is the

correlation between pore pressure and shear work found by Towhata and

Ishihara (1985). Iai et al. (1990a) formulated the liquefaction front concept

to simulate the cyclic mobility and dilatancy of sands. The procedure is as

follows.

Liquefaction is followed on a shear stress - effective mean normal stress

plane, which roughly corresponds to a Mohr-Coulomb plane, Figure 8. During

the decrease of the effective mean normal stress, the shear stress approaches

the failure line or liquefaction. Here there are two boundaries, one is called
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Figure 7: Effective confining stress decrease as a function of the applied shear
stress (after Towhata and Ishihara, 1985). The dash lines correspond to fronts
with the same shear work values.

transformation line (where dilatancy begins), and the other is the failure line

(where the liquefaction takes place). These two lines are characterized by the

transformation angle φp, and the friction angle φ, respectively.

The liquefaction front is characterized by a state variable S that is the ratio

between the current effective mean normal stress σ′m and the initial effective

mean normal stress σ′mo; it takes values between one (no pore pressure built

up) and close to zero (liquefaction). These values are represented by S0 and

are obtained by correlating the plastic shear work with the liquefaction front

as,

w = Ws/Wn

where Ws is the integral of the plastic work defined in the equations above.

Wn = τmoγo/2 is the plastic work at small strains, and γo = τmo/Gmo. Iai et

al. (1990a) used the following empirical relationships to describe the cyclic

mobility,
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Figure 8: Schematic figure of the liquefaction front, state variable S, and
shear stress ratio r (after Iai et al., 1990a).

if w < w1 S0 = 1− 0.6(w/w1)
p1

if w > w1 S0 = (0.4− S1)(w1/w)p2 + S1

if r < r3 S = S0

if r > r3 S = S2 +
√

(S0 − S2)2 + [(r − r3)/m1]2

where

r2 = m2S0

r3 = m3S0

S2 = S0 − (r2 − r3)/m1

m1 = sin φ

m2 = sin φp

m3 = 0.67m2
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where p1, p2, w1, S1 are the parameters that define the dilatancy of the sands

and can be obtained from stress controlled experiments with pore pressure

generation. Figure 9 shows the relation between the different parameters.

For more details of the model and parameters identification please see Iai et

al. (1990b).
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Figure 9: Dilatancy parameters (after Iai et al., 1990a).

Further Simplifications

The above formulation as stated corresponds to the two dimensional formu-

lation. However, for the case where infinite horizontal layers, and vertical

incident wave propagation is assumed, the problem can be reduced to one

dimension. This is easily achieved by constraining the lateral deformation

(εx − εy). Thus, the model is driven only by pure shear such as the one

produced by the SH vertical incident wave propagation.

2.3 Wave Propagation

In a typical geological setting, the shear wave velocity of the sediments in-

creases with depth. Consequently, seismic wave paths are refracted such that

they hit the earth’s surface at almost normal incidence. Empirical results also
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show that the shear wave dominates the seismic signal. Thus, to a first ap-

proximation, the wave propagation can be reduced to a one-dimensional shear

wave. The model assumes continuum mechanics and implements a computer-

based numerical integration of the one-dimensional shear wave equation of

motion,

ρ
∂2u

∂t2
=

∂τxy

∂y

where u denotes the displacement field perpendicular to the vertical axis at

position y and time t, ρ is the density of the material, and τxy is the shear

stress.

The numerical integration of the wave equation is performed using a

velocity-displacement-stress staggered grid second order finite difference for-

mulation (Moczo, 1998). The boundary conditions correspond to traction

free conditions at surface; and rigid and elastic boundary conditions at the

soil-rock interface (Joyner and Chen, 1975). These correspond to,

τxy(y = 0) = 0 free surface

τxy(y = H) = ρrβru̇ rigid boundary condition

τxy(y = H) = ρrβr(2u̇+ − ˙uH) elastic boundary condition

where ρr and βr are the density and shear wave velocity of the bedrock, ˙uH is

the particle velocity at the boundary soil-bedrock, u̇+ is the particle velocity

of the incident wavefield, and H is the depth where the soil-bedrock interface

takes place. The nonlinear effective stress code is called hereafter as NOAH.

Stability Conditions

Any numerical solution of the wave equation has to comply with the so-called

stability conditions. They are numerical constraints so that the numerical

solution is stable (it does not diverge with time) and accurate. The stability

conditions are for both discretization grid dy and time step dt,
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dy =
Vmin

fmax ppw

dt = p0
dy

Vmax

where Vmax and Vmin are the maximum and minimum velocity of the medium,

ppw is the number of points per wavelength, fmax is the maximum frequency

of the simulation, and p0 is the fraction of the minimum time step.

Numerical solutions of the linear wave equation uses between 6 to 12 points

per wavelength depending on the numerical scheme used. For instance, for a

second order scheme the number is 12, and for fourth order scheme the number

is 6 (Moczo, 1998). However, in the case of nonlinear wave propagation more

points per wavelength are needed to avoid dispersion of the solution.

In nonlinear materials the shear modulus G decreases as the shear strain

increases. However, since the shear modulus G = ρβ2, a decrease in the

modulus reduces the effective shear wave speed, and thus more points per

wavelength are needed to make the solution stable. Conversely, the value

of p0 controls the fraction of the time step, so that the numerical solution

has the correct phase. Depending on the computed strain, which reflects the

shear modulus degradation, the number of points per wavelength should be

at least 12
√

10.

Implementation of Q

Incorporation of realistic models of intrinsic attenuation in time-domain com-

putations is based on the rheology of the generalized Maxwell body (Day,

1998). The idea is that the stress-strain rheology is modified as

τxy(t) = G(γxy(t)−
n∑

l=1

ζl(t))

where G is the shear modulus given by the hyperbolic model, and ζl are the

memory variables that follow
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τi
dζi(t)

dt
+ ζi(t) = λi

δM

M
γxy(t)

where τi and λi are the relaxation times and quadrature weights that approx-

imate Q−1(ω) as

Q−1(ω) ∼ δM

M

n∑

l=1

λi ω τi

ω2 τ 2
i + 1

The equation above is solved by simulated annealing (P.C. Liu, 2000, Pers.

Comm.) to obtain τi and λi, and δM
M

is aproximated as

δM

M
= 1

Q(ω) in seismology is assumed frequency independent. Its value comes

from the damping ratio at low strains ξ, as Q = 1/(2ξ). In general four mem-

ory variables are enough to simulate the attenuation in the desired frequency

range (0.1 < f < 20 Hz) within a 4% accuracy.

3 The Input File

NOAH has an auxiliary code that computes the grid size and time step for

the finite difference solution. This code is called PREPNOAH. This code also

computes the memory variables used for the approximation of Q. Both codes

use the same input file which is organized as follows.

By default, both NOAH and PREPNOAH read the input file that always

has the name input.iai. This file has three different parts. The first cor-

responds to the wave propagation variables (e.g. medium size, total time of

simulation, etc.). The second part corresponds to the layer information (e.g.

velocities, density, Q, etc.). The third part is the boundary condition (e.g.

elastic, borehole, or rigid).
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For example, let us assume the case of a soil deposit that has two layers.

The total thickness of the deposit is 40 m. The first layer has a thickness of

10 m, and the water table is located at 2 m depth. In addition, the ground

motion has been recorded at 22 m depth. The rest of information is listed in

Table 1.

Layer Depth (m) α (m/s) β (m/s) ρ (kg/m3) Q φ K0

1 0 640 220 1750 20 35 0.5
2 2 640 220 1750 20 40 0.5
3 10 1500 350 1850 50 40 0.5

Rock 22 1500 350 1850

Table 1: Material properties model for the example downhole array.

Note that the computational model has three layers instead of two. This

is because the first layer has been divided in two sublayers. The first is dry,

and the second contains the water table. This is because even in the case of

total stress analysis, NOAH will compute the effective vertical stress if the

water table is present. This will affect the maximum strength of the layer.

Another observation is on what is called rock in Table 1. This is actually

the same layer No. 3. This is because the second layer has a thickness of 30

m, but the ground motion was recorded at 22 m depth. Thus, the boundary

condition is borehole, and there is no impedance contrast.

A short comment on the boundary conditions. If the user has total motion

data, that means the recorded waveform at depth is from borehole sensors, the

boundary condition is borehole. This boundary condition is useful when the

recorded motion is deep and there is no way of separating the total wavefield

from the incident wavefield.

Conversely, the elastic or transmitting boundary conditions are more nat-

ural to use. However, that means that the wavefield should be the incident

wavefield. The computation of the incoming wavefield is left to the user with

his/her method. The user should only be aware that if he/she decides to use
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the elastic boundary condition, the assumption of incident wavefield is made.

Finally, the incident wavefiel cannot easily be computed from surface

records when strong nonlinearity has taken place. In such cases, if down-

hole records are available, use them as borehole boundary conditions for the

nonlinear computation.

Having said that, the input.iai file looks like:

10. freqmax

22 ppw

0.01 p0

22. medsize

40. duration

2. water table

1.E-2 dt0

15. flowp

0.1 fhigh

BP (HP=high pass, LP=low pass, BP=bandpass)

5.0 rpos

3 nlayers

####### layer 1: #####

0. top

640. Vp

220. Vs

1750. density

1.0E-5 (0 = linear, nonlinear otherwise)

20. Q

0.0 0.0E3 0.0E3 viscosity, sigma_ma, cohesion

0.0 porosity

0.5 Ko

35. phi

0. pha

0. p1

0. p2

0. w1

0. S1

0. c1

0.3 Hmax

####### layer 2: #####

2. top

640. Vp

220. Vs

1750. density
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1.0E-5 (0 = linear, nonlinear otherwise)

20. Q

0.0 0.0E3 0.0E3 viscosity, sigma_ma, cohesion

0.45 porosity

0.5 Ko

40. phi

28. pha

0.5 p1

0.65 p2

7.0 w1

0.01 S1

3.97 c1

0.3 Hmax

####### layer 3: #####

10. top

1500. Vp

350. Vs

1850. density

1.0E-5 (0 = linear, nonlinear otherwise)

50. Q

0.0 0.0E3 0.0E3 viscosity, sigma_ma, cohesion

0. porosity

0.5 Ko

40. phi

0. pha

0. p1

0. p2

0. w1

0. S1

0. c1

0.3 Hmax

####### bedrock: #####

350. velocity

1850. density

borehole (borehole, elastic, rigid)

The values in input.iai are self explanatory and are related to the equa-

tions described in the previous sections. Note that all values follow the MKS

metric system. However, the input and output acceleration time histories are

given in cm/s/s just because that is customary in seismology. Yet, additional

detail is needed for the following parameters.
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• If the P-wave velocity is unknown, set a zero value. NOAH will assume

a poisson ratio of 0.33 to compute the P-wave speed from the shear

wave velocity.

• NOAH in practice uses a viscosity term in order to control the high

frequency damping during the wave propagation (Bardet and Tobita,

2001). The addition of the viscosity term helps to assure numerical

stability. Its value, η is chosen following the formulation proposed by

Li (1990) as,

η =
C0 G0

πf0

where C0 is the fraction of viscous damping, usually around 0.01, and f0

is the minimum frequency of the signal to be damped, usually between

1 and 5 Hz. NOAH uses by default f0 = 1 Hz. C0 is what is called

viscosity in input.iai.

• The field σma is the so-called effective reference stress (Iai et al., 1990a).

This stress is basically the effective confining stress at the middle of

each layer. If a negative value is used, the effective confining pressure

is automatically computed by the code. If the user wishes a specific

value it has to be a positive one. The use of this parameter is to correct

the values of the shear and rebound modulae as a function of depth as

follows:

G = G0(
σ′mo

σ′ma

)0.5

K = Ka(
σ′mo

σ′ma

)0.5

NOAH has implemented this option; however, if the user does not want

to perform this correction, put 0.0 in the corresponding field. This is the

24



case used in the example. The units of the effective confining pressure

are in Pascals.

• When clayey soils are modeled, they need the cohesion (in Pascals) in

order to compute the maximum shear strength as

τmax = coh cos(φ) + σ′m0 sin(φ)

• The porosity n is obtained from laboratory data. If n ≤ 0, the excess

of pore pressure is not computed. The porosity is related to the void

ratio e as

n =
e

1 + e

• The coefficient of earth at rest K0 may be computed as function of the

angle of the internal friction φ and the overconsolidation ratio OCR,

K0 = (1− sin φ)OCRsin φ

• The remaining parameters, except for the angle of internal friction

φ, can be ignored if no excess of pore pressure is computed (n ≤
0). If the pore pressure is computed, then the dilatancy parameters,

φp, p1, p2, w1, S1, c1 need to be specified.

• The final field Hmax is the maximum damping value at large strains for

total stress analysis only. When pore pressure is computed this field is

not used. It is a dummy value. This value can be obtained from the

damping curves coming from the laboratory. For clays Hmax is between

20% to 25%, and for sands between 30% to 40%, respectively.
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4 Determination of the Dilatancy Parameters

The dilatancy parameters are values that describe the dynamic behavior of

a dilatant material. In what follows we will see how to determine those

parameters from modeling simple cyclic shear stress in a soil element using

the multishear mechanism.

The dilatancy parameters can be determined in two different ways. Both

ways are complementary; however, they can be used independently as well.

The first is when stress controlled experiment data are available. The second

corresponds to the fit of the liquefaction strength curve. Most of the time,

only the latter is available from the laboratory experiments. Note, however,

that the liquefaction strength is obtained from stress controlled experiments.

• The first parameter is the transformation phase angle φp (variable pha

in input.iai). This corresponds to the angle that divides the contrac-

tive from the dilative zone. It defines the phase transformation line in

Figure 8. If no laboratory data are available, tan(φp) = 5
8
tan(φ) can be

assumed (Ishihara and Towhata, 1982).

• In the following, a transcript from Iai et al. (1990b) is shown. First of

all, the test data, commonly available in the practice of soil dynamics,

should be provided for representing (i) a liquefaction resistance curve

(i.e. the cyclic shear stress ratio vs. the number of the cyclic loading N1

required to cause shear strain of 5% in double amplitude), (ii) an enve-

lope of an excess pore water pressure generation curve such as shown

in Figure 10 by a broken line, and (iii) and envelope of shear strain

amplitude such as shown in Figure 11 by broken lines.

• The parameter S1 takes small positive value of about 0.005 so that S0

will never be zero. In such a special case as the stress strain curve

should become a closed loop during the cyclic mobility, S1 can take a

larger value an can be determined in a trial and error manner.
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Figure 10: Excess pore water pressure generation curve (after Iai et al.,
1990b).

Figure 11: Shear strain amplitude (after Iai et al., 1990b).

27



• The parameter c1 for specifying the threshold level is temporarily fixed

to 1.0 as the first guess. The value of c1 will later be modified in a

trial and error manner. The modification in the value of c1, however,

does not have a great influence upon the cyclic mobility when the shear

stress ratio is much higher than the threshold level. Therefore, with

c1 = 1.0, the rest of the parameters w1, p1, p2 are determined by the

following steps from the test results with a relatively large shear stress

ratio.

• The parameters w1 and p1 are determined in a trial and error manner

from the excess pore water pressure generation curve. In particular,

the portion of the curve for p/(−σ′m0) < 0.6 is used, in which p denotes

excess pore water pressure. Because w1 is not significantly influenced

by variation in p1, the parameter w1 is at first determined with an

appropiate guess of p1. The value of p1 ranges from 0.4 to 0.7. With

the determined value of w1, the value of p1 is determined. In general

the greater w1 is, and the greater p1 is, the more slowly the pore water

pressure rises.

• Though the parameter p2 could also be determined from the pore water

pressure generation curve for p/(−σ′m0) > 0.6, it is better to determine

this parameter from the envelope of strain amplitude if the primary

purpose of the cyclic mobility analysis is to estimate the amount of

deformation in soil structures and foundations. The value of p2 ranges

from about 0.6 to 1.5; the greater p2 is, the faster the shear strain

amplitude increases.

• When all the parameters are determined by the steps mentioned above

from the laboratory data with a relatively large shear stress ratio, the

next step is to examine if these parameters are also appropiate for rep-

resenting the laboratory data at a relatively small shear stress ratio.
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If not, then the parameter c1 is modified in a trial and error manner.

With increasing c1, the higher threshold level is achieved.

5 Compiling and Running NOAH

Once the input file has been completed PREPNOAH is ready to be used.

First PREPNOAH has to be compiled. It is a one time compilation. This

code outputs the time step, grid size, and memory values for computing Q.

These parameters in term are used to determine the size of the arrays in

NOAH. The ouput of PREPNOAH are the files: intermed.par and Q.par.

The user also should be aware that NOAH’s input and output accelera-

tion time histories are in SAC format. There is also a postprocessor program

W2LAB, which will be explained in the corresponding section that uses MAT-

LAB libraries. Thus, the user should contact his/her system administrator

to know about the details of those programs (SAC and MATLAB) before

compiling NOAH’s codes.

The following is a simple makefile that can be used and modified to compile

NOAH’s codes. The compilation instructions and paths are optimized for my

Linux box.

# makefile for compiling NOAH’s programs

F77=f77 # FORTRAN 77

F90=f90 # FORTRAN 90

FAST_FLAG = -O3

SACLIB = /home/fabian/Tools/SAC2000/lib # SAC library

MATLIB = /usr/local/matlab6/extern/lib/glnx86 # MATLAB library

LDSAC = -L${SACLIB} -L/usr/X11R6/lib

LDMAT = -L${MATLIB}

LIBS = -lsac -lnsl -lX11

LIBM = -lmat -lmx -lmi -lut -lnsl

all: prepnoah noah w2lab stress2strain

clean:
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/usr/bin/rm -f core *.o *% *stress* *strain* *water*

prepnoah : prepnoah.f90

${F90} ${FAST_FLAG} -o $@ $@.f90

noah : noah.f90

${F90} ${FAST_FLAG} ${LDSAC} -o $@ $@.f90 ${LIBS}

w2lab : w2lab.f

${F77} ${FAST_FLAG} ${LDMAT} -o $@ $@.f ${LIBM}

stress2strain : stress2strain.f90

${F90} ${FAST_FLAG} -o $@ $@.f90

this makefile uses the F90 compiler f90. Thus, first compile PREPNOAH

and NOAH, and then run them as follows:

make prepnoah noah

prepnoah y

where y says to PREPNOAH to compute the memory variables for Q. The

output of PREPNOAH are the files: intermed.par, and Q.par. They look

like:

• intermed.par:

23 nx

1408652 nt

2.8396E-05 dt

9.9386E-01 dx

1 iskix

• Q.par:

0.00688002724 0.148935959 0.292529911

0.0488630421 0.00867180619 0.211700663

0.281062007 -0.0197941065 0.20329462

1.85879183 -0.13781397 0.292474926

0. 0.236348256

2. 0.236348256

10. 0.102340549
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If the user decides to change the points per wavelength or p0, the Q values

do not need to be recomputed, thus PREPNOAH can be called as:

prepnoah n

NOAH can now be used as:

noah input.sac output.sac

where input.sac and output.sac are the file names of the input and the

computed acceleration time histories in SAC format, respectively. NOAH

will also output the following files: output.strain.sac, output.stress.sac, and

output.water.sac. They are the shear strain, shear stress, and excess of pore

water pressure (if computed) time histories at the desired depth. In addition,

NOAH flushes in real time an ASCII file called output.dat, which contains

the velocity, strain, stress, and effective mean stress at the same dt0 time step

of the input time history. This file can be used in MATLAB, SCILAB, or

MATHEMATICA to observe the evolution of the computations.

For example, if the user has MATLAB installed, NOAH comes with a

MATLAB script, DIB2B, that reads output.dat and plots the current com-

puted values as shown in Figure 12.

6 Postprocessing

NOAH also outputs a binary file that contains the velocity, strain, stress, and

water pore pressure every ikipx × dx meters. Its name is Nwavefield and

it has all those data multiplexed. The postprocessor code W2LAB demulti-

plexes this file, and dumps the corresponding files in MATLAB format. Two

MATLAB scripts, MAXST and DIBT, read those files and plot the distri-

bution of maximum strain versus depth, and snapshots as the one shown in

Figure 12 at the different depths. The user can use his/her imagination to

plot the results as wished.

In Linux, the FORTRAN 90 version of W2LAB works fine with the MAT-

LAB libraries; this is not the case for the UNIX version of MATLAB. Thus,
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Figure 12: Computed acceleration, velocity, displacement time histories, and
the corresponding stress-strain loop, stress path, and excess of pore pressure
at GL-5m.
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W2LAB is written in FORTRAN 77 and it has to be compiled every time

that the user changes the number of nodes in the 1D grid. The user may

write:

make w2lab

w2lab Nwavefield

the output files of W2LAB are: velocity.mat, stress.mat, strain.mat, and

meanstress.mat.
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Appendix: Determination of the Dilatancy Pa-

rameters

We have already seen how to determine the dilatancy parameters in the previ-

ous sections. In the following we will stress the procedure using a code called

STRESS2STRAIN. This program simulates simple shear laboratory experi-

ments under stress controlled conditions. It uses the same rheology as NOAH;

however, the numerical solution is made solving the equilibrium equations at

each time step (quasi-static conditions). One observation, STRESS2STRAIN

uses a Newton-Raphson method with line searches to solve the nonlinear equa-

tions. The method is implemented in a very simple way (the line searches

algorithm). As a consequence the code is quite slow. The user may modify

this program as he/she wishes, and send us a copy of a faster version.
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Figure 13: Liquefaction resistance curve for the second layer listed in Table
1. The laboratory data are represented by the dashed line, and the fit to the
model by the solid circles.

As an example we will try to obtain the dilatancy parameters that model

the liquefaction resistance curve shown in Figure 13.

Modifying the amplitude cyclic stress ratio, we proceed to seek for the
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dilatancy parameters that best model Figure 13 by a trial and error manner.

An example of the output file from STRESS2STRAIN is shown in Figure

14. STRESS2STRAIN is called as:

stress2strain inputfile
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Figure 14: Synthetic stress controlled experiment when the cyclic stress ratio
is 0.41. The effective confining stress here is 98 kPa. The straight lines in
the strain time history represent the 5% double amplitude threshold. In this
case N = 4.

The input file, kl2.inp, looks like:

isine.dat strainfile

0.41 cyclic stress ratio

1.0E-2 dt

10 Ncycles

12 IM

0.45 poro

2.2E9 Kf

640.0 Alpha (m/s)

220.0 Beta (m/s)

40.0 phi

28.0 pha
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0.5 p1

0.65 p2

7.0 w1

0.01 S1

3.97 c1

1750.0 rho (kg/m^3)

1.0 Ko

10.0 depth (m)

0.0E3 sigma_ma (kPa)

98.0E3 sigma_confining (kPa)

0.3 Hmax

the file that plots Figure 14 is called DIBONE.M. The final dilatancy param-

eters are listed in Table 2.

Layer w1 p1 p2 c1 S1

2 7.0 0.5 0.65 3.97 0.01

Table 2: Dilatancy parameters for Layer 2.
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