North Atlantic decadal climate variability in a large ensemble of CGCM runs

<u>Ralf Hand¹</u>, Johann Jungclaus¹, Jürgen Bader¹, Daniela Matei¹, Nora Specht¹, and Davide Zanchettin²

1: Max Planck Institute for Meteorology, Hamburg, Germany, 2: University of Venice, Italy

October 25th, 2016

Outline

1 Introduction

- 2 Modes of multi-annual SST variability in MPI-ESM
- 3 Spatial structure & time series of the AMV
- 4 The AMOC under moderate and strong radiative forcing
- 5 Lag Correlation analysis of the AMV with the AMOC and the SPG
- 6 Outlook & Summary

1. Introduction

Motivation & Introduction

- It is part of an ongoing debate what drives multi-annual to decadal SST variability in the North Atlantic (e.g. Clement et al., 2015 and responses)
 - Is the AMV only a result of integrating atmospheric noise?
 - or do changes in the AMOC related ocean heat transports into the North Atlantic the cause the SST variability there?
- Here we use a large ensemble of CGCM runs to...
 - ...identify modes of ocean variability.
 - ...analyse the impact of moderate and strong external forcing.
 - ...better understand and quantify the links between different ocean modes in the Atlantic.

Experimental Setup

Expansion of the CMIP5 ensembles

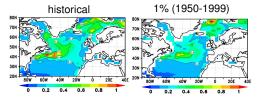
- MPI-ESM-LR
 - atm. resolution: T63L47
 - ocean resolution: GR15L40

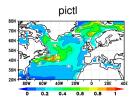
Control: 1 run, 2000 years, climatological radiative forcing

Set of 2 different ensembles with varying radiative forcing:

- Historical: 100 runs, 138 years each, hist. radiative forcing
- 1% : 69 runs, 138 years each, 1% CO₂ increase per year

2. Modes of multi-annual SST variability in MPI-ESM

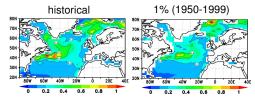

- How do typical patterns of multi-annual SST variability in general look like in the MPI Earth system model?
 - How robust are these throughout the ensemble?
 - How does radiative forcing impact SST variability?
- Are the variability patterns the same throughout the whole historical ensemble or is it possible to find different "clusters" of individual runs with different patterns of variability?

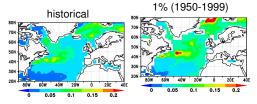


Multi-annual SST variability & the role of ext. forcing

Time std. of 11-yr running mean SST [K]

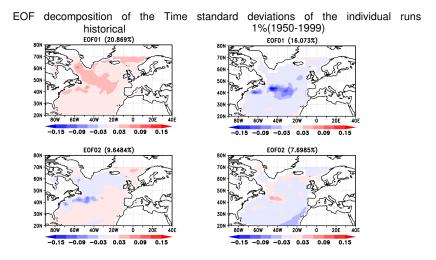
- Patterns of low frequency SST variability agrees between historical and control run.
- ...but is reduced in the 1% scenario (subject to detrending method?)


Ralf Hand - North Atlantic decadal climate variability in a large ensemble of CGCM runs Modes of multi-annual SST variability in MPI-ESM

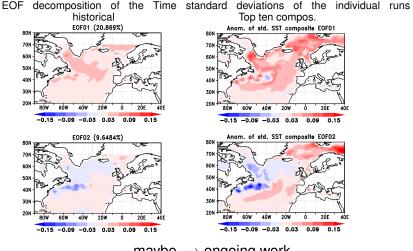

Multi-annual SST variability & the role of ext. forcing

Time std. of 11-yr running mean SST [K]

- Patterns of low frequency SST variability agrees between historical and control run.
- ...but is reduced in the 1% scenario (subject to detrending method?)
- Ensemble spread is highest in regions with high temporal variability
- Higher differences between the individual runs in 1% experiments



Ensemble spread of SST time standard deviations computed for each run individually [K]

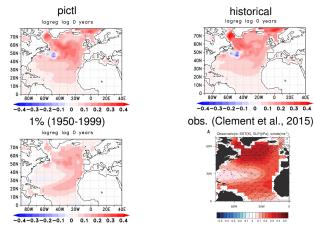

Is it possible to group runs in terms of variability patterns?

Ralf Hand - North Atlantic decadal climate variability in a large ensemble of CGCM runs Modes of multi-annual SST variability in MPI-ESM

Is it possible to group runs in terms of variability patterns?

...maybe. ightarrow ongoing work

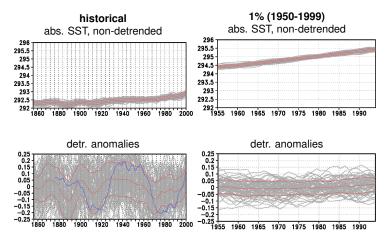
Ralf Hand - North Atlantic decadal climate variability in a large ensemble of CGCM runs Modes of multi-annual SST variability in MPI-ESM


3. Spatial structure & time series of the AMV

- How is the AMV represented in the ensemble?
- Does a changed forcing impact the spatial structure or the temporal variability of the AMV?

Spatial structure of the AMV is robust over all experiments

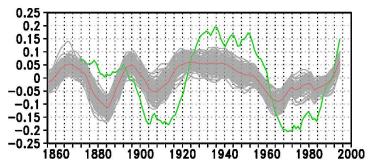
Regressions 11-year runmean detrended SST anomaly fldmean 85W:20E/0:70N on 11-year runmean detrended SST anom.



Ralf Hand - North Atlantic decadal climate variability in a large ensemble of CGCM runs Spatial structure & time series of the AMV

AMV timeseries has forced signal in the hist. runs

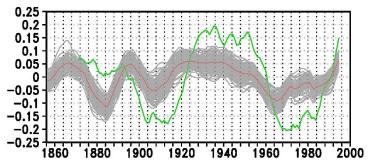
11yr-runmean of SST fldmean 85W:20E/0:70N



Ralf Hand - North Atlantic decadal climate variability in a large ensemble of CGCM runs Spatial structure & time series of the AMV

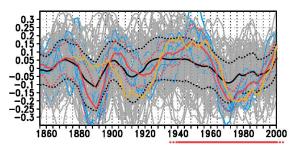
Forced signal in historic runs is robust...

... even when reducing the ensemble size



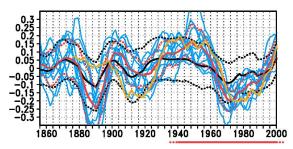
AMV ensemble mean timeseries of 100 subsamples, each consisting of 30 randomly choosen historical runs (red: ensemble mean, green: HadISST)

Forced signal in historic runs is robust...


... even when reducing the ensemble size

AMV ensemble mean timeseries of 100 subsamples, each consisting of 30 randomly choosen historical runs (red: ensemble mean, green: HadISST)

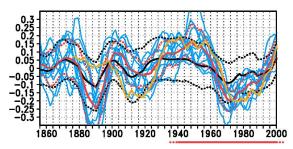
next step: pick runs with high correlation to observations: What are the ingredients to get a correct AMV? Which are the important processes connected to the AMV?



individual runs entire ensemble

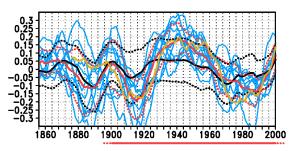
ensemble mean and +/- 1 std. of the full ensemble subsample 10 ensemble members with highest correlation to observations ensemble mean and +/- 1 std. of the subsample HadISST

- I "best-of" subensemble shows sharp transitions → key to understand the mechanism that control AMV phase changes?
- ensemble spread of subensemble is narrower than that of the entire ensemble



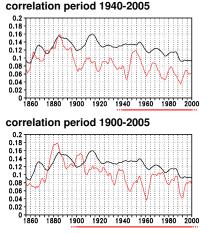
individual runs entire ensemble ensemble mean and +/- 1 std. of the full ensemble subsample 10 ensemble members with highest correlation to observations ensemble mean and +/- 1 std. of the subsample HadISST

- "best-of" subensemble shows sharp transitions → key to understand the mechanism that control AMV phase changes?
- ensemble spread of subensemble is narrower than that of the entire ensemble



individual runs entire ensemble ensemble mean and +/- 1 std. of the full ensemble subsample 10 ensemble members with highest correlation to observations ensemble mean and +/- 1 std. of the subsample HadISST

- "best-of" subensemble shows sharp transitions → key to understand the mechanism that control AMV phase changes?
- ensemble spread of subensemble is narrower than that of the entire ensemble



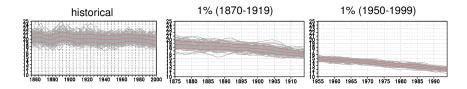
individual runs entire ensemble

ensemble mean and +/- 1 std. of the full ensemble subsample 10 ensemble members with highest correlation to observations ensemble mean and +/- 1 std. of the subsample HadISST **but:** when choosing a different period to compute the correlation the subensemble is not distinguishable from the entire ensemble

Is there potential predictability of the AMV?

ensemble std. of the full ensemble ensemble std. of the 10 runs with AMV highest correlated to observations

- What explains the difference of the between the subensemble spreads computed for the two different periods of AMV correlation?
 - Was choosing 1940-2005 as period just a lucky punch?
 - Do background conditions at initialization time play a role for predictability?
 - Does ocean memory of the forcing play a role?

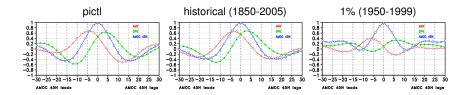

4. The AMOC under moderate and strong radiative forcing

- How is the AMOC represented in the ensemble?
- Does a strong forcing impact the the mean state or the variability of the AMOC?

AMOC shows strong changes in 1% simulations

AMOC as baroclinic stream function at 45N, 1000m (11-yr runmean, in Sv)

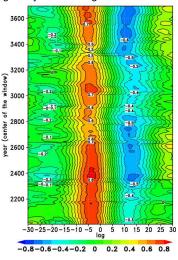
- Mean AMOC is more or less stable throughout the historical simulations
- Historical simulations show a high ensemble spread
- AMOC slows down in the 1% simulations
- Slow down goes along with reduction in ensemble spread



5. Lag Correlation analysis of the AMV with the AMOC and the SPG

- What are the links between different ocean processes MPI-ESM?
- What is the impact of forcing on the link between ocean indices?
- Are there indices that might form useful predictors for others?

Link between modes of ocean variability changes under strong forcing

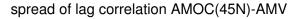


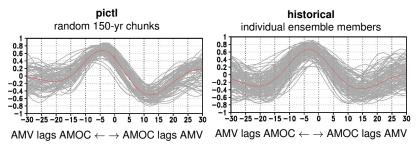
- Correlation between ocean indices is the same in pictl and under moderate time varying forcing.
- \blacksquare Corellations are reduced in the 1% runs \rightarrow partly masked by internal variability due to smaller AMOC and AMV variability in the future climate

AMOC-AMV Lag-correlation has varying strength pictl

pictl sliding 150-yr window lag corr. AMOC vs. AMV

 Lag-correlation shows qualitatively robust link,...

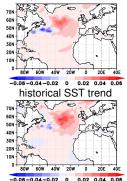

 ...but the strength of the correlation varies during time


AMV lags AMOC $\leftarrow \rightarrow$ AMOC lags AMV

Ralf Hand - North Atlantic decadal climate variability in a large ensemble of CGCM runs Lag Correlation analysis of the AMV with the AMOC and the SPG

Spread of AMOC-AMV lag-correlations in pictl & the historical ensemble

- There are also quantitative (but not qualitative) differences between the individual members of the historical ensemble.
- The spread is slightly larger than that of the random 150-year chunks from pictl
- Open question: What determines the strength of the link between AMV and AMOC? Are the differences between the different ensemble members/time chunks randomly or can they be explained by physical processes.


AMOC regression patterns

Regressions of SST and SST trend on 11-year runmean detrended AMOC at 45N.

pictl SST 701 601 50N 401 30N 201 101 wha .∡ów 20W -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 historical SST 701 601 50N 401 30N 20N 105 20E

60w 4ów 20W

-0.8-0.6-0.4-0.2 0

pictl SST trend

Strong AMOC goes along with large-scale warming trend in the North Atlantic

40

0.2 0.4 0.6 0.8

6. Outlook & Summary

Summary

- AMV has an external forced signal in the historical ensemble
- Understanding the mechanism of AMV phase shifts might be of importance to simulate the AMV correctly
- Indication for AMV precictablility in the historical ensemble
- AMV and AMOC show qualitatively robust relationship in pictl and the historical ensemble
 - but: strength of the correlation varies during time in pictl and between the individual ensemble members in the historical ensemble
- AMV and AMOC show reduced variability in a changed climate
 - link between AMV and AMOC might be masked in a future climate

Outlook

- Expand the regression analysis to other indices (e.g. also to large-scale atmospheric modes)
- Compute the ocean heat transports and investigate how the ocean processes influence the redistribution of heat
- Perform dedicated sensitivity experiments to modulate certain modes
 - How could a proper setup look like?

Summary

- AMV has an external forced signal in the historical ensemble
- Understanding the mechanism of AMV phase shifts might be of importance to simulate the AMV correctly
- Indication for AMV precictablility in the historical ensemble
- AMV and AMOC show qualitatively robust relationship in pictl and the historical ensemble
 - but: strength of the correlation varies during time in pictl and between the individual ensemble members in the historical ensemble
- AMV and AMOC show reduced variability in a changed climate
 - link between AMV and AMOC might be masked in a future climate

Thank you for your attention! contact: ralf.hand@mpimet.mpg.de

