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Motivation

Rainfall over Eastern Africa shows a high degree of interannual variability.

The interannual variability of rainfall over the region is strongly linked to
SST anomalies over the tropical Oceans (Nicholson et al., 1997, Black et
al., 2002 and Omondi et al., 2012).

Particularly, El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole
(IOD) are suggested to be the dominant driver of the rainfall variability.

Therefore, investigating the future changes in regional rainfall patterns
associated with ENSO and IOD is of great importance for the region to
tackle the anticipated droughts and floods associated anthropogenic climate
change.
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Objectives

To assess the ability of climate models (regional and global) to
reproduce the telconnection forcing of tropical SST on rainfall over
eastern Africa, with particular attention paid to the propagation of
large-scale teleconnection signals into the domain of the RCMs

To examine the projected changes in the characteristics of ENSO and
IOD (such as the mean state, intensity and frequency).

To investigate whether the current rainfall anomalies associated with
ENSO and IOD are projected to change in the twenty-first century.
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Data used for the analysis

GCMs GCMs hor. res RCA4 CCLM4
CanESM2 2.8 * 2.8o X

CNRM-CM5 1.4 * 1.4o X X
GFDL-ESM2M 2.5 * 2.0o X

EC-EARTH 1.125 * 1.12o X X
HadGEM2-ES 1.875 * 1.25o X X

MIROC5 1.4 * 1.4o X
MPI-ESM-LR 1.9 * 1.9o X X
NorESM1-M 2.5 * 1.9o X

Model data
Rainfall and SST data from 8 CMIP5 GCMs(1st member except EC-EARTH)
Rainfall data from RCA4 and CCLM driven by CMIP5 GCMs(0.44o res)

Observed data
GPCC: gauge based gridded observational dataset
NOAA.ERSST.v3b: satellite-gauge combined dataset

Analysis period
1976 to 2005 is considered as reference period and projected analysis performed for far
future (2070-2099) on two-concentration pathways (RCP4.5 and RCP8.5).
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How well the models perform at reproducing the observed teleconnection patterns
(amplitudes and spatial patterns)?
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Study region and area of analysis
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Homogeneous rainfall regions(left) with corresponding annual cycles(right) as categorized using

Ward’s hierarchical clustering technique
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Correlations of JJAS rainfall averaged over
NEA, against concurrent grid-point SSTs.

Rainfall in NEA has significant correlation
with SSTs in Eastern equatorial Pacific
Ocean.

Pattern correlation of correlation
coefficients between the models and
observation. Correlations are weighted with
respect to latitude.

Era-interim driven RCMs reproduced the
pattern well

Disagreement in GCM-driven RCMs, with
one another and with observation.

No clear improvement observed in RCMs to
their driving GCMs.

Hussen Seid 7



Correlations of OND rainfall averaged over
EEA, against concurrent grid-point SSTs.

EEA has significant correlation with SSTs in
western tropical Indian Ocean and Eastern
equatorial Pacific Ocean.

Pattern correlation of correlation
coefficients between the models and
observation.

ERA-Interim driven RCMs have better
agreement with observation.

HadGEM2-ES, MPI-ESM-LR,
GFDL-ESM2M and EnsMean better
performed than others.

CanESM2 and MIROC5 poorly performed.
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Correlations of OND rainfall averaged over
SEA, against concurrent grid-point SSTs.

Significant correlations observed over central
part of tropical Indian Ocean.

Pattern correlation of correlation
coefficients between the models and
observation.

The pattern well reproduced by ERA-Interim
driven RCMs.

HadGEM2-ES, MPI-ESM-LR,
GFDL-ESM2M and EnsMean better
performed than others.

CanESM2 and MIROC5 still show a pattern
opposite to the observed.
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JJAS rainfall teleconnections, as identified through a linear regression analysis
against Nino3.4 index

Units are mm/dayoC.
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OND rainfall teleconnections, as identified through a linear regression analysis
against Nino3.4 (left) and IOD (right) index

Units are mm/dayoC.
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Taylor diagrams for the standardized amplitude and spatial correlation of rainfall
teleconnections

NEA − NINO3.4 index
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GCMs generally underestimate the amplitude of
teleconnection patterns while RCMs tend to
overestimate it.

The overestimation of amplitude by the RCMs probably
linked with enhanced precipitation due to a better-
resolved topography.

GCM(circle), RCA(triangle) and CCLM(diamond).
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Taylor diagrams for the standardized amplitude and spatial correlation of rainfall
teleconnections

EEA − IOD index
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GCM(circle), RCA(triangle) and CCLM(diamond).
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Summary 1

Some models reproduce the observed teleconnective SST-rainfall patterns (spatial
patterns and amplitudes) better than others. RCMs driven by HadGEM2-ES,
MPI-ESM-LR and GFDL-ESM2M performed relatively better than RCMs driven by
other GCMs.

The RCM-reanalysis runs have been performed better than RCM-GCM runs in
most subregions and seasons.

GCMs generally underestimate the amplitude of teleconnection patterns while
RCMs tend to overestimate it.

The largest source of uncertainty in the regional climate model simulations in the
context of teleconnective forcing of rainfall over Eastern Africa is the choice of
GCM used to force the RCMs, reinforcing the understanding that the use of a
single GCM to downscale climate predictions/projections and using the downscaled
product for assessment of climate change projections is insufficient.
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Difference in mean SST between the future and reference period from the
ensemble of the CGCMs
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Frequency and intensity of ENSO events in the present climate and changes in the
future relative to the present
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*Frequency is calculated as the number of occurrence of ENSO events, computed from the 3-month SST anomalies of ONI.

*Intensity is computed as the average of the maximum ONI for all ENSO events for present and future periods
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Frequency and intensity of IOD events in the present climate and changes in the
future relative to the present
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*Frequency is calculated as the number of occurrence of IOD events, computed from the 3-month SST anomalies of DMI.

*Intensity is computed as the average of the maximum DMI for all IOD events during present and future periods
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Differences in JJAS teleconnection patterns resulted from regression coefficients
against Nio3.4 index between future and historical period

Units are mm/dayoC.
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Differences in OND teleconnection patterns resulted from regression coefficients
against Niño3.4 (left) and IOD (right) index between future and historical period

*Over eastern part of the domain, the ENSO/IOD related rainfall anomaly is stronger compared
to the present

*Over the southern part of the region the ENSO/IOD signal gets weaker.
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Differences in OND rainfall anomalies between future and current El Niño years
(left) and positive IOD years (right)

Units are mm/day.
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Differences in OND rainfall anomalies between future and current La Niña years
(left) and negative IOD years (right)

Units are mm/day.
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Summary and conclusions

Analyses of projections based on CGCMs indicate an El Niño-like (positive
IOD-like) warming pattern over the tropical Pacific (Indian) Ocean.

However, large uncertainties remain in projecting future changes in ENSO/IOD
frequency and intensity. Some models show increase of ENSO/IOD frequency and
intensity, but others show a decrease or even no/small change.

During ENSO and IOD years, two important changes in the teleconnection signals

in future have been found:

Over eastern part of the domain (Eastern horn of Africa), the
ENSO/IOD related rainfall anomaly is projected to strengthen
Over the southern part of the regions the ENSO/IOD signal is
projected to weaken compared to the present period.

The enhanced rainfall events over the eastern horn of Africa attributable to ENSO
and IOD phases are probably linked to a warmer western region of the Indian
Ocean in future compared to the present.
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Thank You!!
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