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Outline

« What is weather and climate variability?
« What is predictability?
 How is predictability quantified?

« Sources of predictability

« Estimating predictability

« Realizing predictability (or prediction skill)
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Weather and Climate Variability

« Temperature tomorrow is not the same as today

 Monthly (seasonal) mean precipitation for June-July-August
seasonal average over India is not the same in 2014 as in 2015

* Average precipitation over India for a 10-year average changes

from one decade to another
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2014 2015

MONSOON MONSOON
EXCESS NORMAL DEFICIENT SCANTY I } NO RAIN
+20% OR MORE +19% TO -19% -20% TO-59% < -60% TO -99 % /=100 %
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Quantifying Variability
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Predictability

» Predictability: From the knowledge of the current state of the

ocean, our ability to anticipate its future evolution

« Prediction for a particular time-scale, what fraction of variability

can be anticipated?

— Predictability varies between 0-100% of variability
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Why all the variability is not predictable?
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There is always a spread (uncertainty) in forecasts!

 Non-linear dynamical systems sensitivity to specification of initial
conditions
 Deterministic chaos

« Uncertainty could be better quantified, but can never be removed

« dx/dt = o (y - x)

c dy/dt=x(p-2)-vy
- dz/dt=xy-B z
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Example of Seasonal Prediction

@ NWS /NCEF /CPC Last update: Sun Apr 6 2014

Initicl conditions: ZEMarzZ014—44pr2014

CFSv2 forecast Nino3.4 SST anomalies (K)
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20132 2014 201%
Latest 2 forecst rmembers — —— Eorecdst ensemble mean
Earliest 8 forecst members —_— NCDC doily analysis

Other farecaost mambers
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Example of Climate Projection

Global mean temperature near—term projections relative to 1986-2005
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The forecast spread (uncertainty) can be quantified using ensemble

prediction approach where a collection of forecasts is initiated from
small perturbations in the initial conditions
 In a nutshell

— The reason for a limit on predictability stems from limits on the accuracy of
predictions on shorter time-scales

— One cannot always predict the state of the atmosphere At from now with

100% accuracy no matter how small At is.
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How is Predictability Quantified?

« Spread in forecast outcomes from different initial conditions can be
quantified as probability density function (PDF)

« It is our ability to distinguish PDF of outcomes for the event to be
predicted from the climatological PDF

« Differences in the PDF can come from differences in various

moments of the PDF
— Mean

— Spread

— Skewness
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How is Predictability Quantified?

Probability Density P(X)
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High predictability
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Low predictability
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Why it is Important to Understand and Quantify
Predictability?

« Helps gauge limits of prediction skill and manage expectations

« Helps pinpoint sources of predictability, e.g., SST = for
atmospheric variability

« How do climate models simulate processes, physics and
interactions to better predict “sources” of predictability?

 Provides one way to focus model improvements

 Where to place limited resources (ensemble size, model resolution,

analysis, perturbations,...)
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Sources of Predictability
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Sources of Predictability

Weather — Atmospheric initial conditions

A

Seasonal - Boundary conditions (upper oceans, soil moisture, snow, sea-ice...)

Decadal — deeper oceans,...

Climate projections - CO,,...

VAN

For different lead time, the relative contribution from sources of predictability

differs
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Influence of Various Factors on the PDF

...initial conditions

...boundary conditions
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Seasonal-to-Interannual - ENSO
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Estimating Predictability
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Methods for Estimating Predictability

 Observational data Daily time-series

— Predictor - Predictand relationships

— Analogs

— Da”y time-series DJF Z700 Correlation with SST index

« Simple; unbiased, but non-linearity is hard to incorporate
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Methods for estimating predictability

« Models

—Ensemble of integrations
* Spread among the ensemble members is the

unpredictable component

 Ensemble mean (the common part) is the

predictable component
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Model Simulations

DJF CO4/05 200 mb height
(a) NCEP runi
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Decomposing Total Variability
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Ratio of Predictable and Unpredictable Component
200mb Z
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Realizing Predictability
« Predictability > Prediction skill
« Requires a real-time forecast system

« To realize predictability that exists, forecast systems need to have certain

attributes

- Design and framework of long-range prediction systems (Thursday)
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Realizing Predictability
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Implication of Limited Predictability

« Since future outcomes are
not certain, forecasts have

to be probabilistic

« Decision making under

[ [ L L) - Eﬁ ; 2 ‘x, .
probabilistic information : =
context is hard e\ PRRES <
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Summary

 There is variability associated with all time-scales

« All variability cannot be anticipated in advance - Predictability

 There are physical reasons that allow us to anticipate variability -

sources of predictability

* Predictability can be estimated either from observational data or

model simulations

« Forecast systems allow to realize predictability as prediction skill
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