Variability and Predictability in Long-Range Predictions

Arun Kumar Climate Prediction Center College Park, Maryland, USA arun.kumar@noaa.gov

Outline

- What is weather and climate variability?
- What is predictability?
- How is predictability quantified?
- Sources of predictability
- Estimating predictability
- Realizing predictability (or prediction skill)

Weather and Climate Variability

• Temperature tomorrow is not the same as today

• Monthly (seasonal) mean precipitation for June-July-August seasonal average over India is not the same in 2014 as in 2015

• Average precipitation over India for a 10-year average changes from one decade to another

ICTP-IITM ESM Workshop 18 July, 2016

Annual Mean All India Temperature Anomaly

Quantifying Variability

ICTP-IITM ESM Workshop 18 July, 2016

Variance of 200-mb DJF Seasonal Mean Height

Predictability

• <u>Predictability</u>: From the knowledge of the current state of the ocean, our ability to anticipate its future evolution

- Prediction for a particular time-scale, what fraction of variability can be anticipated?
 - Predictability varies between 0-100% of variability

Why all the variability is not predictable?

There is always a spread (uncertainty) in forecasts!

- Non-linear dynamical systems sensitivity to specification of initial conditions
- Deterministic chaos
- Uncertainty could be better quantified, but can never be removed

•
$$dx/dt = \sigma (y - x)$$

•
$$dy/dt = x (\rho - z) - y$$

$$\cdot dz/dt = xy - \beta z$$

Example of Seasonal Prediction

Example of Climate Projection

- The forecast spread (uncertainty) can be quantified using <u>ensemble</u> <u>prediction</u> approach where a collection of forecasts is initiated from small perturbations in the initial conditions
- In a nutshell
 - The reason for a limit on predictability stems from limits on the accuracy of predictions on shorter time-scales
 - One cannot <u>always</u> predict the state of the atmosphere Δt from now with 100% accuracy no matter how small Δt is.

How is Predictability Quantified?

- Spread in forecast outcomes from different initial conditions can be quantified as probability density function (PDF)
- It is our ability to distinguish PDF of outcomes for the event to be predicted from the climatological PDF
- Differences in the PDF can come from differences in various moments of the PDF
 - Mean
 - Spread
 - Skewness

How is Predictability Quantified?

High predictability

Low predictability

Why it is Important to Understand and Quantify Predictability?

- Helps gauge limits of prediction skill and manage expectations
- Helps pinpoint sources of predictability, e.g., SST \rightarrow for atmospheric variability
- How do climate models simulate processes, physics and interactions to better predict "sources" of predictability?
- Provides one way to focus model improvements
- Where to place limited resources (ensemble size, model resolution, analysis, perturbations,...)

Sources of Predictability

Sources of Predictability

- Weather Atmospheric initial conditions
- Seasonal Boundary conditions (upper oceans, soil moisture, snow, sea-ice...)

For different lead time, the relative contribution from sources of predictability

- Decadal deeper oceans,...
- Climate projections CO₂,...

differs

Influence of Various Factors on the PDF

Seasonal-to-Interannual - ENSO

Decadal - PDO

Sea Surface Temperature Anomaly (shading)

Estimating Predictability

Methods for Estimating Predictability

Observational data Daily time-series

- Predictor Predictand relationships
- Analogs
- Daily time-series

• Simple; unbiased, but non-linearity is hard to incorporate

Methods for estimating predictability

- Models
 - -Ensemble of integrations
 - Spread among the ensemble members is the unpredictable component
 - Ensemble mean (the common part) is the predictable component

Model Simulations

Decomposing Total Variability

Unpredictable Component

1000 2000 3000 4000 5000 6000 7000 8000

100 500

Ratio of Predictable and Unpredictable Component 200mb Z

ICTP-IITM ESM Workshop 18 July, 2016

Realizing Predictability

• Predictability \rightarrow Prediction skill

- Requires a real-time forecast system
- To realize predictability that exists, forecast systems need to have certain attributes

• \rightarrow Design and framework of long-range prediction systems (Thursday)

Realizing Predictability

Implication of Limited Predictability

 Since future outcomes are not certain, forecasts have to be probabilistic

 Decision making under probabilistic information context is hard

Summary

- There is variability associated with all time-scales
- All variability cannot be anticipated in advance Predictability
- There are physical reasons that allow us to anticipate variability sources of predictability
- Predictability can be estimated either from observational data or model simulations
- Forecast systems allow to realize predictability as prediction skill