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Outline

The heart of any Earth System Model (ESM) is represented by the dynamical
core, where governing equations for the atmosphere and the ocean (fluid)
dynamics are solved.

The main aspects to be taken into account:

I Governing equations

I Space dicretization schemes

I Time discretization schemes

I High performance computing



Governing equations for atmospheric flows

∂ρ

∂t
+ ∇ · (ρu) = 0 ( conservation of mass )

∂u

∂t
= −∇K − (2Ω + ζ)× u− 1

ρ
∇p+ ∇Φ + Fu

ext + Fu
par ( Newton 2nd law )

∂(ρε)

∂t
+ ∇ · [(ρε+ p+ F εR) · u] = 0 ( conservation of energy )

p = ρRT ( equation of state )

where:
air considered as ideal gas with ρ = mass density, p = pressure, T =
temperature, R = ideal gas constant for dry air
u = velocity
K = 1

2
u · u = kinetic energy per unit mass

ζ = ∇× u = relative vorticity
Ω = rotation velocity of the Earth
Φ = normal gravity potential
Fu
ext = resultant of the external forces
Fu
par = effect of parametrized processes

ε = e+K = cpT +K = total ( internal + kinetic ) energy per unit mass
F εR = radiation energy flux



Governing equations for oceanic flows

∇ · u = 0 ( conservation of mass )
∂u

∂t
= −∇K − (2Ω + ζ)× u− 1

ρ
∇p+ ∇Φ + Fu

ext + Fu
par ( Newton 2nd law )

∂θ

∂t
+ ∇ · (θu) = F θpar ( conservation of energy )

∂S

∂t
+ ∇ · (Su) = F Spar

ρ = ρ(S, T, p) ( equation of state )

where:
ρ = mass density, p = pressure, T = temperature, for water
S = salinity
u = velocity
K = 1

2
u · u = kinetic energy per unit mass

ζ = ∇× u = relative vorticity
Ω = rotation velocity of the Earth
Φ = normal gravity potential
Fu
ext = resultant of the external forces
Fu
par,F

θ
par,F

S
par = effect of parametrized processes

θ = potential temperature



The problem to be solved

I The set of governing equations for the atmosphere and the ocean are
examples of system of nonlinear partial differential equations (PDE’s), to
be solved on some spatial domain Ω and time interval [0, tf ], given
suitable boundary (BC) and initial (IC) conditions.

I Therefore the typical problem to be solved in ESM is an intial/boundary
value problem of the (general) form:

∂ψ

∂t
= L(ψ)

ψ(0) = ψ0

BC

where
I ψ = ψ(x, t) is a dependent variable, function of space and time

x ∈ Ω, t ∈ [0, tf ].
I L is a (generally nonlinear) differential operator.



The problem to be solved: initial data

I ESM is an initial / boundary value problem: given an estimate of the
present state of the atmosphere (initial conditions), and appropriate
surface and boundary conditions, the ESM simulates the atmosphere /
ocean evolution ( ∂

∂t
=⇒ evolution PDE’s)

I the more accurate the estimate of the initial conditions the better the
quality of the forecast / simulation.

I currently initial conditions are produced in NWP centers through a
statistical combination of observations and short range forecasts. This
approach is called “data assimilation“, uses all the available information
to determine as accurately as possible the initial state of the atmospheric
/ oceanic flow, and consumes a relevant part of an EMS.

I data assimilation can take a relevant part of computational resources in
a ESM.



The problem to be solved: boundary conditions
Boundary conditions: Global vs. Regional models.

I If Ω is a complete spherical shell sorrounding the Earth, ESMs are called
Global circulation Models (GCMs) or global climate models (AGCMs vs.
OGCMs).

I If Ω has the size of a continent, ESMs are called Limited Area Models
(LAMs), or Regional models, or mesoscale models ( ARCMs vs ORCM ).

I AGCMs: no explicitly driven boundary conditions (no lateral boundary).
I RCMs need to be nested into GCMs, which provide the proper boundary

conditions to the formers (the RCM is said is driven by a GCM).
I Surface boundary conditions: the coupling between different ESM

components provides proper fluxes.



Consequences of the nonlinearity of the problem
The problem to be solved

∂ψ

∂t
= L(ψ)

ψ(0) = ψ0

BC

is typically highly nonlinear. As a consequence:
I even if you can prove that it is well posed, in general you are not able to

find a representation formula for its solution ψ.

=⇒ As a result, an approximation ϕ of the solution ψ = ψ(x, t) has to be
searched, through the introduction of suitable

I space discretization techniques
I time integration techniques

I the system is chaotic, i.e. the solution is strongly dependent on the initial
conditions. Therefore

I ensamble simulations are considered for NWP
I ergodic assumption is made for climate simulations

I there is an interaction btw. different space scales: possible source of
”nonlinear instabilities" in the numerical approximation ϕ.



Multiscale nature of the problem

I All the phenomena along the dashed line are important for weather and
climate, and so need to be represented in numerical models.

I Important pahenomena occur at all scales (no spectral gap), and interact
with eachother.

I Computer resources are finite and so numerical models must have a
finite resolution h.

I Shaded region shows the resolved space and time scales in a typical
current day climate model.

I The important unresolved processes cannot be neglected and so must
be represented by sub-grid models or parametrizations.



Space discretization techniques

The original domain Ω is replaced by a spatially discretized domain Ωh and
the original problem is replaced by:

dϕi
dt

= Lh(ϕ)i, i = 1, . . . ,m

ϕi(0) = (ϕ0)i, i = 1, . . . ,m

BCh

where
Lh denotes a discrete approximation of the continuous differential operator L
h denotes the tipical size of the discrete spatial elements and determine the
resolution of the spatial discretization.
This semi-discrete problem is a system of ( generally nonlinear ) Ordinary
Differential Equations (ODE’s) whose unknowns ϕi are approximations of the
continuous solutions ψ.



Space discretization techniques

Main approaches:

1. Finite Differences (vertical discretization of IITM atmosphere component)

2. Spectral Transform (horizontal discretization of IITM atmosphere
component)

3. Local Galerkin Methods / Projection methods (Finite Element, Spectral
Element, Discontinuous Galerkin)

4. Finite Volumes (space discretization of IITM ocean component)



Finite Differences

I Ωh = {xi, i = 0, . . . ,m}, called grid, is a regular array of discrete
locations, called nodes. h = ∆x is the average spacing between nodes.

I ϕi(t) ≈ ψ(xi, t).

I Lh is obtained by replacing derivatives present in L with finite difference
quotients.

I Example in 1D. If Ω = [0, L] and L(ψ) = ψ′, then
Ωh = {xi = ih, i = 0, . . . ,m} with h = ∆x = L/m, and, for example:

Lh(ϕ)i =
ϕi+1 − ϕi−1

2h



Example in 1D: Shallow Water Equations (SWE)

Shallow water equations, linearized about a state of rest, with Coriolis forces
neglected: they are derived from depth-integrating the general governing
equations, in the case where the horizontal length scale is much greater than
the vertical length scale and the free surface perturbation is much smaller
than the mean depth h << H :

∂h

∂t
+H

∂u

∂x
= 0

∂u

∂t
+ g

∂h

∂x
= 0



Finite Differences: A staggering in 1D

unknowns h and u are co-located at the same gridpoints (Arakawa A-grid):

∂hi
∂t

+H
ui+1 − ui−1

2∆x
= 0

∂ui
∂t

+ g
hi+1 − hi−1

2∆x
= 0



Finite Differences: C staggering in 1D

unknowns h and u are located at staggered (shifted) gridpoints (Arakawa
C-grid):

∂hi
∂t

+H
ui+1/2 − ui−1/2

∆x
= 0

∂ui+1/2

∂t
+ g

hi+1 − hi
∆x

= 0



Finite Differences: Arakawa staggering in 2D

In two dimensions other arrangements for h and u, v nodes are possible:

Arakawa A grid:

I unstaggered grid - all variables defined everywhere;
I poor performances, first grid geometry employed in NWP

models;
I noisy - large errors, short waves propagate energy in wrong

direction, additional smoothing required;
I poorest at geostrophic adjustment - wave energy trapped;
I can use a 2x larger timestep than staggered grids.

Arakawa B grid:

I staggered grid - velocities components co-located at corners;
I preferred at coarse resolution;
I superior for poorly resolved inertia-gravity waves;
I good for geostrophic adjustment and Rossby waves;
I bad for gravity waves: computational checkerboard mode;
I used by MM5 model (and hence by RegCM).



Finite Differences: Arakawa staggering in 2D

Arakawa C grid: I staggered: pressure (h) at center, normal velocity at grid cell
faces;

I preferred at fine resolution;
I superior for gravity waves;
I good for well resoved inertia-gravity waves;
I simulates Kelvin waves well;
I bad for poorly resolved waves: Rossby waves (computational

checkerboard mode) and inertia-gravity waves due to averaging
the Coriolis forces;

I used by WRF model.

Arakawa D grid:

I staggered: pressure (h) at center, tangential velocity at grid cell
faces;

I poorest performances, worst dispersion properties, rarely used;
I noisy - large errors, short waves propagate energy in wrong

direction.



Finite Differences Methods for vertical discretization
IITM-ESM atmospheric component uses finite differences for vertical
discretization with 64 σ− pressure hybrid layers:

I in the sigma system the vertical coordinate is the
pressure normalized with the surface pressure:

σ :=
p

p
S

(Phillips 1957)

where p
S

(x, y, t) is the pressure at the surface.
I pro: simpler lower boundary condition;
I con: over steep orography problem of cancellation

of two terms which comprise the pressure gradient.
I Alternative: hybrid sigma pressure coordinate

(Sangster 1960, Simmons and Burridge 1981):
- similar to the the usual sigma coordinate at
lower level but
- it reduces to pressure above a certain fixed
level. For example:

σ =
p

p
S

+

(
p

p
S

− 1

)(
p

p
S

−
p

p0

)
, p

0
a constant.

σ → p
p
S

ifp→ p
S
,whileσ → p

p
0

ifp→ 0.

I the vertical velocity is σ̇ = Dσ
Dt .

I Lorenz staggering: temperature staggered wrt
vertical velocity. Pro: energetic consistency;
con: vertical computational mode.



Finite Differences Methods: pros and cons

I easy to implement

I you need to be careful to ensure conservation and avoid spurious wave
solutions (staggering, filtering ...)

I typically not high order accurate

I not easy to introduce adaptivity

I not flexible, for example not suited for unstructured grids.



Choice of the horizontal mesh

What is Ωh ? The choice is not unique

  



Galerkin methods

I Consider a linear differential operator P and the corresponding PDE

Pu = f in Ω

I Approximate the solution as linear combination of given basis functions
Φi(x) ( called trial functions)

u(x, t) ≈ uN (x, t) =

N∑
i=1

ai(t)Φi(x)

I minimize the residual PuN − f, another vector: look at its components in
onother basis Ψk (called test functions)

I Trial (Φi) and test (Ψk) functions are from same basis and satisfy
boundary conditions (BC)

I classification:
I Φi,Ψk with global support: spectral method
I Φi,Ψk with compact support: finite element / spectral element method



The Spectral Transform Method: historical introduction

I first introduced into meteorological modelling (Silberman, 1954), for the
non-divergent barotropic vorticity equation in spherical geometry;

I for a balanced barotropic model, the spectral method could compete with
the grid point method wrt performances and accuracy (Elsaesser, 1966);

I for high resolution complex non-adiabatic models, the spectral method
was not considered a realistic alternative to the grid point method:
nonlinear terms requiring computing and storing too many "interaction
coefficients“, difficult incorporation of local physical processes;

I The advent of the Fast Fourier Transform (Cooley and Tukey, 1965)
meant the introduction of the ”transform method”, independently by
Eliasen et al., 1970 and Orszag, 1970: no interaction coefficients are
involved, while at each timestep grid point values of dependent variables
are computed in an auxiliary grid in the physical space;

I spectral transform models started to be used for routine NWP in
Australia (Bourke et al., 1977), Canada (Daley et al., 1976), and today
are used at ECMWF (Hortal 1991, Hortal and Simmons 1991), in the US
at NCEP (Jouang, 2004) and IITM of course !



The Spectral Transform Method: basic principles
The complete set of equations used in any atmospheric model may be written
in quite a general form as:

∂

∂t
Li(ωi) = Fi(ω

1, ω2, . . . , ωI), i = 1, 2, . . . , I. (1)

where the prognostic variables ωi = ωi(r, t), i = 1, 2, . . . , I are scalar
functions of the space coordinates, given by r, and of the time t.
Li is a linear (space) differential operator, typically the laplacian Li = ∇2, but
often reducing to the identity operator Li(ωi) = ωi.
Fi is a generally nonlinear space differential operator.
Any of the variables ωi is approximated by a truncated series of the form:

ω̂i(r, t) =
N∑
n=1

ωin(t)ψn(r)

Remark: using such a representation, space derivatives can be evaluated
analitically, without approximations.
Any series expansion method replaces in (1) ωi with ω̂i, transforming a
system of PDEs for the prognostic variables into a system of ODE’s for their
expansion coefficients ωin = ωin(t) only.
Replacing ωi with ω̂i, then (1) is satisfied up to a residual
Ri = ∂

∂t
Li(ω̂i)− Fi(ω̂1, ω̂2, . . . , ω̂I)



The Spectral Transform Method: basic principles 2
And considering the case of a scalar equation: R = ∂

∂t
L(ω̂)− F (ω̂).

N equations for the expansion coefficients ωn(t) are obtained by imposing to
the residual to be orthogonal to the test functions ψn (Galerkin projection):∫

S

R(ω̂)ψndS = 0, n = 1, 2, . . . , N. (2)

Assuming the expansion functions ψn to be eigenfunctions of the operator L

L(ψn) + εnψn = 0, n = 1, 2, N (3)

then equations (3) take the form:
N∑

n′=1

εn′

∫
S

ψnψn′dS
dωn′

dt
=

∫
S

F (
N∑

n′=1

ωn′ψn′)ψndS, n = 1, . . . , N (4)

which is a system of N linear algebraic equations in the tendencies dωn′
dt

, to
be solved with a proper time integrator (see second part of the lecture).
Remark: if the basis functions ψn, n = 1, . . . , N are chosen to be
orthogonal, then the matrix at the left bhand side becomes diagonal:∫

S

ψnψn′dS = δn,n′ (5)

so that no matrix inversions are required for the estimation of the tendencies
dωn′
dt

.



The Spectral Transform Method on a toy problem: linear advection eq.
The linear advection equation may be written in 1D as:

∂ω

∂t
+γ

∂ω

∂λ
= 0, inT1×(0, t), γ = constant advection angular velocity.

Clearly it is: ω(λ+ 2πp, t) = ω(λ, t), ∀p ∈ N.
A natural choice for the expansion functions is given by the trigonometric
ones:

ω̂(λ, t) =

M∑
m=−M

ωm(t)eimλ,

where being ω̂(λ, t) a real valued function, the complex valued expansion
coefficients must satisfy ω−m(t) = (ωm(t))∗, with ()∗ indicating the complex
conjugate. Therefore ω̂ is completely specified is coefficients ωm(t) are given
for 0 ≤ m ≤M.
For such expansion functions following orthogonality relation holds:

1

2π

∫ 2π

0

eimλe−im
′λ = δm,m′

giving the following expression for the expansion coefficients ωm(t) :

ω(t) =
1

2π

∫ 2π

0

ω̂(λ, t)e−imλ dλ.



The Spectral Transform Method on a toy problem: linear advection eq.
Replacing in the advection equation the unknown ω(λ, t) with its truncated
expansion ω̂(λ, t), we get following spectral truncated equation:

M∑
m=−M

(
dωm
dt

+ imγωm)eimλ = 0.

As the expansion functions are linearly independent this equation is
equivalent to following equations for the expansion coefficients only:

dωm
dt

+ imγωm = 0 for−M ≤ m ≤M,

whose solution is:

ωm(t) = ωm(0)e−imγt

Substituing this expression for the expansion coefficients ωm(t) into the
truncated series for ω̂, we get the spectral solution:

ω̂(λ, t) =
M∑

m=−M

ωm(0)eim(λ−γt) ≡ ω̂(λ− γt, 0)

Remark: since the chosen expansion functions eimλ are eigenfunctions of
the space differential operator F = ∂

∂λ
involved in the linear advection

equation, then no minimization of the residual is required and the truncated
series exactly satisfies the equation (way different from grid point methods).



The Spectral Transform Method on the sphere: spherical harmonics
For representing fields defined on the sphere surface by mean of truncated
series expansions we use surface spherical harmonics denoted by Y mn (λ, µ).
These complex valued functions of variables λ ∈ [0, 2π] and µ ∈ [−1, 1], are
defined as eigenfunctions of the Laplace operator on the sphere, i.e. as
solutions of the equation:

∇2ψ = kψ on the sphere surface, k = constant.

Consider the Laplace operator in spherical coordinates (λ, θ, r) :

∇2ψ =
1

r2

[
∂

∂r

(
r2
∂ψ

∂r

)
+

1

cos θ

∂

∂θ

(
cos θ

∂ψ

∂θ

)
+

1

cos2 θ

∂2

∂λ2

]
,

then its restriction to the spherical shell r = 1 is:

∇2ψ|r=1 =
1

cos θ

∂

∂θ

(
cos θ

∂ψ

∂θ

)
+

1

cos2 θ

∂2

∂λ2

and consider the change of variables from θ to µ = µ(θ) = sin θ :

∂

∂θ
=

∂

∂µ

dµ

dθ
=⇒ ∂

∂θ
= cos θ

∂

∂µ
=⇒ ∂

∂µ
=

1

cos θ

∂

∂θ
(6)

and hence:

∇2ψ|r=1 =
∂

∂µ

(
(1− µ2)

∂ψ

∂µ

)
+

1

1− µ2

∂2ψ

∂λ2
(7)



The Spectral Transform Method on the sphere: spherical harmonics
∇2ψ = kψ requires k to have the form: k = −n(n+ 1), n ∈ N.
so have to solve:

∂

∂µ

(
(1− µ2)

∂ψ

∂µ

)
+

1

1− µ2

∂2ψ

∂λ2
+ n(n+ 1)ψ = 0

Using the method of separation of variables, we assume ψ(λ, µ) = L(λ)P (µ),
insert it into the previous eq. and multilpy by (1− µ2)/(PL) :

1− µ2

P

d

dµ
((1− µ2)P ′) + n(n+ 1)(1− µ2) = −L

′′

L

lhs depends on µ only, while rhs depends on θ only, so they have to be
constant:

−L
′′

L
= m2, m ∈ N =⇒ L′′ +m2L = 0 =⇒ L(λ) = e∓imλ.

d

dµ
((1− µ2)P ′) +

(
n(n+ 1)− m2

1− µ2

)
P = 0 =⇒ P = Pmn (µ)

which is known as associated Legendre equation, whose solutions Pmn (µ)
are called Legendre functions of the first kind of order m and degree n.
So finally our spherical harmonics expansion functions are defined as:

ψ(λ, µ) = P (µ)L(λ) = Pmn (µ)eimλ = Y mn (λ, µ)



The Spectral Transform Method on the sphere: spherical harmonics
Properties of spherical harmonics Y mn (λ, µ) = Pmn (µ)eimλ:
eimλ describes the zonal variation of the spherical harmonic wave;
Pmn (µ) describes the meridional variation of the spherical harmonic wave.
Pmn (µ) are expressed analitically by the Rodrigues formula:

Pmn (µ) =

(
1− µ2

)m
2

2nn!

dn+m

dµn+m
(µ2 − 1)n

From this representation formula for Pmn follow these properties:
Pmn (µ) is a polynomial of degree n s.t. Pmn = 0(⇒ Y mn = 0 ) if n+m > 2n
i.e. if n < |m|, therefore it make sense to consider only the spectral
harmonics Y mn with n ≥ |m|.



The Spectral Transform Method on the sphere: spherical harmonics

From the Rodrigues formula:

Pmn (µ) =

(
1− µ2

)m
2

2nn!

dn+m

dµn+m
(µ2 − 1)n

we deduce:

Pmn (µ) = (1− µ2)
|m|
2 Qn−|m|(µ),

Qn−|m|(µ) being a polynomial of degree
n-|m| and parity n− |m|, i.e.:

I Pmn (−µ) = Pmn (µ) if n− |m| is even,
⇒ Ymn (−µ) = Ymn (µ) (simmetric wrt equator)

I Pmn (−µ) = −Pmn (µ) if n− |m| is odd,
⇒ Ymn (−µ) = −Ymn (µ) (antisymmetric wrt
equator).

I n-|m| corresponds to the number of zeros of Pmn in
]− 1, 1[, and hence it can be interpreted as
meridional wavenumber of Ymn , with n being called
total wavenumber. Y mn (λ, µ), n = 5.



The Spectral Transform Method on the sphere: spherical harmonics
orthogonality properties of spherical harmonics:

∫ 1

−1

Pm1
n1

(µ)Pm2
n2

(µ) dµ =

{
(n+m)!
(n−m!)

2
2n+1

ifm1 = m2 = m andn1 = n2 = n

0 ifm1 6= m2 orn1 6= n2

Recurrence relations
taking a derivative in zonal direction of a spherical harmonic is easy

∂

∂λ
Y mn =

∂

∂λ
Pmn (µ)eimλ = imPmn (µ)eimλ = imY mn

Taking a derivative in meridional direction is more complicated and
recurrence relations are needed. Starting with P 0

0 (µ) they allow the
computation of Pmn (µ) and its derivatives for any given m and n (n > m):

µPmn (µ) = εmn+1Pmn+1(µ) + εmn Pmn−1(µ)

(1− µ2)dPmn /dµ(µ) = −nεmn+1P
m
n+1(µ) + (n+ 1)εmn P

m
n−1(µ)

(1− µ2)dPmn /dµ(µ) = (2n+ 1)εmn P
m
n−1(µ)− nµPmn (µ)

(1− µ2)1/2Pmn (µ) = gmn P
m+1
n+1 (µ)− hmn Pm+1

n−1 (µ)

where
εmn =

(
n2−m2

4n2−1

)1/2
, gmn =

(
(n+m+1)(n+m+2)

(2n+1)(2n+3)

)1/2
, hmn =

(
(n−m−1)(n−m)
(2n+1)(2n−1)

)1/2

Remark: similar relations may be obtained for Y mn by multiplying the previous
ones by eimλ



Expanding a spherical field

A field A(λ, µ) on the sphere can be written as:

A(λ, µ)

+∞∑
m=−∞

+∞∑
n=|m|

Amn Y
m
n (λ, µ)

Spectral coefficients Amn are complex numbers that can be computed, thanks
to orthogonality relation, via:

Amn =
1

4π

∫ 1

−1

∫ 2π

0

A(λ, µ)Y mn dλdµ

Expansion coefficients verify the Parseval-Plancherel relation (again thanks
to orthogonality):

1

4π

∫ 1

−1

∫ 2π

0

[A(λ, µ)]2dλdµ =

+∞∑
m=−∞

|Amn |2,

hence global quadratic quantities (like kinetic energy or enstrophy) can be
computed directly in spectral space
If A(µ, λ) is real, then it must hold: A−mn = Amn



Truncating the expansion
Due to limited memory capacity, spherical harmonics expansions need to be
truncated, which leads to a truncation error.
The expansion truncation is defined as the set T of wavenumbers m and n
used in the expansion:

A(λ, µ) =
∑

(m,n)∈T

Amn Y
m
n (λ, µ)

Several types of truncation are used, the main being:
(a) rhomboidal truncation

T = {(n,m) : 0 ≤ |m| ≤M, 0 ≤ |m| ≤ n ≤ |m|+N −M}
(b) triangular truncation

T = {(n,m) : 0 ≤ |m| ≤M, 0 ≤ |m| ≤ n ≤M}

Remark: the main advantage of the triangular truncation is that it is isotropic,
i.e. the resolution is uniform whatever the position of the poles.



Truncating the expansion

I Most used truncation is the triangular one:

A(λ, µ) =

M∑
m=−M

M∑
n=|m|

Amn Y
m
n (λ, µ)

e.g. T42 means triangular truncation with M=42.
I The total number of Y mn for triangular truncation TM is (M + 1)(M + 2)/2

Hence a T42 spectral model contains (43× 44)/2 = 946 spectral
components.

I An equivalence can be established btw. the truncation M of a spectral
model and the mesh size ∆x of a gridpoint model:
the smallest wavelength represented by a spectral model is 2πa/M,
while a gridpoint model takes into account at most 2∆x wavelength.
Therefore we have:

2∆x ≈ 2πa/M ⇐⇒ ∆x(km) ≈ 20000/M

I The atmospheric component of the NCEP-ESM is based on the
NCEP-GFS model with a spectral triangular truncation T126 wich is
corresponding to a resolution of 0.9◦(≈ 120km).



Calculation of spectral coefficients of linear terms: wind components
In spherical coordinates, velocity components u, v are discontinuous across
poles, so they cannot be expanded in spehrical harmonics.
Instead Robert functions are considered:

U = u cos θ, V = v cos θ

with Helmoltz decomposition ( ψ =streamfunction, χ = velocity potential):

U =
∂χ

∂λ
− cos θ

∂ψ

∂θ
=
∂χ

∂λ
− (1− µ2)

∂ψ

∂µ

V =
∂ψ

∂λ
+ cos θ

∂χ

∂θ
=
∂ψ

∂λ
+ (1− µ2)

∂χ

∂µ

expanding χ and ψ in spherical harmonics with truncation T :

ψ(λ, µ) =
∑

(m,n)∈T

ψmn Y
m
n , χ(λ, µ) =

∑
(m,n)∈T

χmn Y
m
n

and remembering:

∂

∂λ
Y mn = imY mn , (1−µ2)

∂Pmn
∂µ

= −nεmn+1Y
m
n+1(µ)+(n+1)εmn Y

m
n−1(µ)

we get:

Umn = imχmn + (n− 1)εmn ψ
m
n−1 − (n+ 2)εmn+1ψ

m
n+1,

V mn = imψmn − (n− 1)εmn χ
m
n−1 + (n+ 2)εmn+1χ

m
n+1



Calculation of spectral coefficients of linear terms: vorticity and
divergence

The vorticity ζ and the divergence D can be written as Laplacian of the
streamfunction ψ and of the velocity potential χ respectively:

ζ = ∇2ψ

D = ∇2χ

but, by definition, spherical harmonics are the eigenfunctions of the Laplace
operator on the sphere:

∇2Y mn = −n(n+ 1)Y mn

therefore it is trivial to get spectral coefficients of ζ and D from those of ψ and
χ :

ζmn = −n(n+ 1)ψmn

Dm
n = −n(n+ 1)χmn

Remark: computation of spectral coefficients of linear terms is simple, but
what about nonlinear terms? They represent the main weakpoint of the
spectral method, making mandatory the shift to the spectral transform
method.



Calculation of spectral coefficients of nonlinear terms:
interaction coefficients method

Given two fields on the sphere A(λ, µ) and B(λ, µ), how to compute the spectral coefficients Cmn
of their product C(λ, µ) = A(λ, µ)B(λ, µ) ?
If

A(λ, µ) =
∑
m1

∑
n1

A
m
n Y

m
n , B(λ, µ) =

∑
m1

∑
n1

B
m
n Y

m
n , C(λ, µ) =

∑
m1

∑
n1

C
m
n Y

m
n

then

C
m
n =

1

4π

∫ 1

−1

∫ 2π

0

C(λ, µ)Ymn dλdµ

=
1

4π

∫ 1

−1

∫ 2π

0

∑
m1

∑
n1

A
m1
n1
e
im1λP

m1
n1

∑
m2

∑
n2

B
m2
n2

e
im2λP

m2
n2

 e
−imλ

P
m
n dλdµ

=
∑
m1

∑
n1

∑
m2

∑
n2

[
1

2π

∫ 2π

0

e
i(m1+m2−m)λ

dλ
1

2

∫ 1

−1

P
m1
n1

P
m2
n2

P
m
n dµ

]
A
m1
n1
B
m2
n2

Remarks:
I If A(λ, µ), B(λ, µ) are defined with truncation M , the product C(λ, µ) is defined with

truncation 2M , for which only the terms included in truncation M need to be kept.
I spectral coefficients Cmn are expressed as a weighted sum of the product of coefficients Amn

and Bmn , the weights being constituted by the integrals [ ] termed interaction coefficients.
I This method is not computationally efficient unless M is small (M ≤ 6): however, when

dealing with a large number of spectral components M, the number of interaction coefficients
becomes too large (M = 126 =⇒ #[ ] ≈ 5.4× 1011), and their storage, bookkeeping and
off and on retrival times become cumbersome.



Calculation of spectral coefficients of nonlinear terms:
transform method

Spectral coefficients Cmn of the product C = AB can be computed more
efficiently not directly from Amn , B

m
n (through interaction coefficients) but

instead by running through these steps:

1. from spectral space to grid space: we compute the values of the factors
A and B at points (λj , µk) of a transformation grid
G = {(λj , µk), j = 1, . . . , J, k = 1, . . . ,K} i.e. we evaluate
A(λj , µk), B(λj , µk).

2. we compute the product in the grid space:

C(λj , µk) = A(λj , µk)B(λj , µk)

3. from grid space to spectral space : C(λj , µk) are transformed back to
Cmn by computing the integral (spectral transform)

Cmn =
1

2

∫ 1

−1

[
1

2π

∫ 2π

0

C(λ, µ)e−imλdλ

]
Pmn (µ)dµ

through proper numerical quadrature formulae which are using only
prevoiusly computed grid point values C(λj , µk).



Calculation of spectral coefficients of nonlinear terms:
transform method

The spectral transform

C
m
n =

1

2

∫ 1

−1

[
1

2π

∫ 2π

0

C(λ, µ)e
−imλ

dλ

]
P
m
n (µ)dµ

can be viewed as the composition of a Fourier transform,

Cm(µk) =
1

2π

∫ 2π

0

C(λ, µk)e
−imλ

dλ

giving the Fourier coefficients of C(λ, µ) at fixed latitude µ = µk and computed through a
trapezoidal quadrature

Cm(µk) =
1

J

J∑
j=1

C(λj , µk)e
−imλj

which is exact if at least J − 1 = 2M +M =⇒ J = 3M + 1,
and a Legendre transform

C
m
n =

1

2

∫ 1

−1

Cm(µ)P
m
n (µ)dµ

computed through a Gaussian quadrature (wk = Gaussian weights, µk Gaussian nodes)

C
m
n =

K∑
k=1

wkCm(µk)P
m
n (µk)

which is exact if at least 2K − 1 = 3M =⇒ K = (3M + 1)/2
In conclusion: by using triangular truncation TM and choosing the number of points of the
Gaussian grid G so as to comply with the constraints:

J ≥ 3M + 1, K ≥
3M + 1

2
,

the spectral coefficients Cmn m of the product C = AB belonging to truncation TM can be
calculated exactly using the quadrature indicated.



Spectral transform method: Gaussian grids

I The Gaussian grids are defined by the quadrature points used to
facilitate the accurate numerical computation of the integrals involved in
the Fourier and Legendre transforms.

I The grids are labelled by N where N is the number of latitude lines
between the pole and the equator: for example, for the N=640 Gaussian
grid, there are 640 lines of latitude between the pole and the equator
giving 1280 latitude lines in total.

I The grid points in latitude, θk , are given by the zeros of the Legendre
polynomial of order 2N (i.e., the total number of latitude lines from pole
to pole): P 0

2N (µk = sin θk) = 0. A consequence of this is that a Gaussian
grid has:

I latitude lines which are not equally spaced;

I no latitude points at the poles;

I no line of latitude at the equator;

I latitude lines which are symmetric about the equator.



Spectral transform method vs. spectral method

Computation time per time step as a function of spectral resolution.
Integrations of a global spectral model employing a transform method and
employing the interaction coefficient method are compared
(from Bourke 1972):

This is the reason why you will find no spectral model nowadays but only
spectral transform models.



Shallow water equation spectral transform model
Let us consider the shallow water equation (SWE) system (it contains all the horizontal operators of
a full 3d model), being φ the geopotential and u

H
the horizontal velocity :

∂φ

∂t
= −∇ · (φu

H
)

∂u
H

∂t
= −(u

H
· ∇)u

H
− fk× u

H
−∇φ

using the identity: (u
H
·∇)u

H
= 1

2∇
(
u
H
· u
H

)
+ ζk×u

H
, (ζ =vorticity) the momentum eq. is:

∂u
H

∂t
= −(ζ + f)k× u

H
−∇

(
φ+

1

2
u
H
· u
H

)
a spectral model requires momentum eq. to be written in terms of vorticity and divergence
equations, so that we take k · ∇× and∇· of prevoius eq., obtaining:

∂ζ

∂t
= −∇ · (ζ + f)u

H

∂

∂t
(∇ · u

H
) =

1

a cos θ

∂

∂λ
[v(ζ + f)]−

1

a cos θ

∂

∂θ
[u cos θ(ζ + f)]−∇2

(
φ+

1

2
u
H
· u
H

)
to remove discontinuities at poles we replace u, v with U = u cos θ

a , V = v sin θ
a , so that our SWE

system takes the form (D = ∇ · u
H

):

∂φ

∂t
= −

1

cos2 θ

(
∂(Uφ)

∂λ
+ cos θ

(∂V φ)

∂θ

)
− φD

∂ζ

∂t
= −

1

cos2 θ

(
∂

∂λ
(U(ζ + f)) + cos θ

∂

∂θ
(V (ζ + f))

)
∂D

∂t
=

1

cos2 θ

(
∂

∂λ
[V (ζ + f)]− cos θ

∂

∂θ
[U(ζ + f)]

)
−∇2

(
U2 + V 2

2 cos2 θ
+ φ

)



Shallow water equation spectral transform model
SWE equations can be written in terms of streamfunction ψ, velocity potential χ (remember that
ζ = ∇2ψ, D = ∇2χ):

∂φ

∂t
= −

1

cos2 θ

(
∂(Uφ)

∂λ
+ cos θ

(∂V φ)

∂θ

)
− φ∇2

χ

∂∇2ψ

∂t
= −

1

cos2 θ

(
∂

∂λ
(U(∇2

ψ + f)) + s : cos θ
∂

∂θ
(V (∇2

+ f))

)
∂∇2χ

∂t
=

1

cos2 θ

(
∂

∂λ
[V (∇2

ψ + f)]− cos θ
∂

∂θ
[U(∇2

ψ + f)]

)
−∇2

(
U2 + V 2

2 cos2 θ
+ φ

)
Now considering a spectral expansion of ψ, χ, φ, U, V, i.e. ψ =

∑
m

∑
n ψ

m
n Y

m
n and similarly for

χ, φ, U, V, after substitution of these spectral expansions in previous equations, the spectral
formulation of SWE takes the form:

d

dt
φ
m
n = −[α(Uφ, V φ)]

m
n − φD

m
n

− n(n+ 1)
d

dt
ψ
m
n = − [α(A,B)]

m
n

− n(n+ 1)
d

dt
χ
m
n = [α(B,−A)]

m
n −

[
∇2

(
U2 + V 2

2 cos2 θ
+ φ

)]m
n

where A = U(∇2ψ + f), B = V (∇2ψ + f), α(A,B) = 1
cos2 θ

(
∂A
∂λ + cos θ ∂B∂θ

)
Remark: spectral coefficients of nonlinear terms at rhs are calculeted through the spectral
transform method, i.e. by:

I first projecting ψ, χ, φ, U, V, from spectral to the grid-space domain on a Gaussian grid,
I multiplying these grid point values to obtain the grid-point values of the nonlinear terms,
I Fourier-Legendre transforming them to convert grid-point values of the nonlinear terms into

their spectral coefficients.



Shallow water equation spectral transform model

I The sum of linear and nonlinear terms at right hand side forms the
tendencies dφmn

dt
(t),

dψmn
dt

(t),
dχmn
dt

(t) of the various spectral coefficients.

I These tendencies along with the spectral coefficients
ψmn (t−∆t), χmn (t−∆t), φmn (t−∆t) at the previous timestep can be
used to obtain the future values of the spectral coefficients by using an
explicit finite difference time integration like leapfrog:

φmn (t+ ∆t) = φmn (t−∆t) + 2∆t
dφmn
dt

,

ψmn (t+ ∆t) = ψmn (t−∆t) + 2∆t
dψmn
dt

,

χmn (t+ ∆t) = χmn (t−∆t) + 2∆t
dχmn
dt

.

(8)

I Finally the new spectral coefficients φmn (t+ ∆t), ψmn (t+ ∆t), χmn (t+ ∆t)
are transformede back to grid-point domain to obtain the forecast fields
of the streamfunction ψ (or vorticity ζ), of the velocity potential χ (or
divergence), and of the geopotential φ (or height) at the free surface.



How to further improve efficiency of spectral transform methods:
reduced Gaussian grids (Hortal 1991, Hortal and Simmons 1991)

Regular (or full) Gaussian grid
A regular Gaussian grid has the following characteristics:

I there are 4N longitude points along each latitude
circle;

I each latitude circle has a grid point at 0◦ longitude;
I the longitudinal resolution in degrees is 90◦/N ;
I the points get closer together (i.e. more crowded)

as the latitude increases towards the poles;
I the total number of grid points is 8N2.

Reduced (or quasi-regular) Gaussian grid
A reduced Gaussian grid:

I has the same number of latitude lines (2N ) as the
corresponding regular Gaussian grid;

I has a grid point at 0◦ longitude on each latitude
circle;

I has a decreasing number of longitude points
towards the poles;

I has a quasi-regular grid spacing in distance at each
latitude;

I provides a uniform CFL (Courant-Friedrichs-Lewy)
condition.



How to further improve efficiency of spectral transform methods:
reduced spectral transform (Jouang, 2004)

The amplitude log10|Pmn | of the associated Legendre functions is the major
key to the application of a reduced spectral transformation.

Features of log10|Pmn |:
I beams of local maxima that rotate from

a lower zonal wave number m near the
pole to a higher zonal wavenumber near
the equator;

I at any given latitude log10|Pmn | shows
two regions separated by the rightmost
white line with significant values of |Pmn |
to the left and and dramatically
monotonically decreasing values to the
right;

I then the idea is that the contributions to
the spectral expansion coming from Pmn
to the right of the rightmost white line
can be neglected.



Spectral transform methods: pros and cons

I Advantages:
I Fourier representation allows to compute horizontal derivatives exactly / analytically;
I nonlinear quadratic terms calculated without aliasing (if computed in spectral space or

using quadratic grids);
I for a given accuracy fewer degrees of freedom are required than in a grid-point model;
I Spherical harmonics are eigenfunctions of the Laplace operator in spherical

coordinates: simpler solution of Helmoltz problem, and hence easy to construct
semi-implicit schemes;

I Spectral transform mtds are suited for GCMs: no pole problem;
I Phase lag errors of mid-latitude synoptic disturbances are reduced w.r.t. grid-point

models;
I The use of staggered grids is avoided.

I Disadvantages:
I The schemes appear complicated, even if they are relatively easy to implement;
I Spectral harmonics are inerhently not suitable for limited-area models (RCMs);
I the computation of nonlinear terms takes a long time unless the transform method is

used;
I physical processes effects cannot be included unless the transform method is used;
I Spectral transform methods require global communication to accurately handle

nonlinear terms, this decreases parallel performances.



Local Galerkin methods

I Same idea of spectral methods but now basis functions are not global,
instead they have compact support (=⇒ fully discrete systems have
sparse matrices);

I in finite elements (low order) and spectral elements (high order), basis
functions are globally continuous;

I in Discontinuous Galerkin methods basis functions may jump across
inter-element boundaries ( enhanced flexibility ).



DG methods for conservation laws
I Start from strong form of governing equations

∂u

∂t
+ ∇ · F(u) = 0 (9)

with proper initial and boundary conditions, to be solved in a domain
Ω ⊂ R2

I Define a partition Th = {KI}NI=1 of domain Ω and choose a finite
dimensional subspace where we are looking for approximate solution :

uh(·, t) ∈ Vh :=
{
f ∈ L2(Ω) : f |KI ∈ QpI (KI)

}
,

i.e. approximate the solution over the element KI as the expansion over
a finite set of given basis functions ψI,j , j = 1, . . . , (pI + 1)2

uh(x, t)
∣∣
KI

=

(pI+1)2∑
j=1

uI,j(t)ψI,j(x). (10)

I



DG methods for conservation laws
I Modal vs nodal bases:

I multiply governing equations by a test function ϕk ∈ Vh and integrate
over element KI ∈ Th:∫

KI

ϕk

[
∂uh
∂t

+ ∇ · F(uh)

]
dx = 0,

I integrate second term by parts (assuming interior element):∫
KI

ϕk
∂uh
∂t

dx−
∫
KI

∇ϕk·F dx+

∫
∂KI

ϕkF̂(u+
h ,u

−
h ,n) ds = 0, (11)

I define proper numerical fluxes F̂(u+
h ,u

−
h ,n),

I substitute expansion (10) into (11) and obtain a ODE system for the
expansion coefficients unI,j , j = 1, . . . , (pI + 1)2.



DG advantages

I DG methods exhibit many interesting features, as:

I Wide range of PDE’s treated within the same unified framework;

I high order accuracy;

I flexibility in the mesh and finite element space design:

  

I nonstructured and nonconforming meshes (hanging nodes)
I nonuniform approximation degree p = pI

I freedom of choice of basis functions,

I orthogonal bases can be easily constructed,

I locality (elemental formulation),

I high parallel scalability,

I therefore DG are appealing for design of new generation dycores but ....



DG challenging issues
I ... when coupled to explicit time stepping, DG methods are affected by

severe stability restrictions as polynomial order increases:

“The RKDG algorithm is stable provided the following condition holds:

u
∆t

h
<

1

2p+ 1

where p is the polynomial degree; (for the linear case this implies a CFL limit 1
3 )”

Cockburn-Shu, Math. Comp. 1989

I ... moreover DG requires more degrees of freedom per element than
Continuous Galerkin (CG) approach, thus more expensive.

How to increase computational efficiency of DG ?
I

coupling DG to semi-implicit semi-Lagrangian (SI-SL) technique (no CFL)

I introduction of p− adaptivity (flexible degrees of freedom)

=⇒ p-SISLDG:
G. Tumolo, L. Bonaventura, M. Restelli, J. Comput. Phys. , 2013
G. Tumolo, L. Bonaventura, Quarterly J. Royal Met. Soc., 2015



Local Galerkin methods: dynamic h− adaptivity / adaptive mesh
refinement (AMR)

Giraldo and Restelli 2008



Galerkin methods: AMR

Giraldo and Restelli 2008



Galerkin methods: dynamic p− adaptivity

Tumolo and Bonaventura, Q. J. R. Meteorol. Soc. 2015



Interacting bubbles test (Robert, 1993)

50× 50 elements, pπ = 4, pu = 5, ∆t = 1 s, C ≈ 87.



Dynamic p-adaptation: the strategy (Tumolo et al. âĂŐJ. Comput. Phys
2013)

I p-adaptivity easier by the use of modal bases: here tensor products of Legendre polynomials;
I hence, the representation for a model variable α becomes (I = (Ix, Iy) multi-index):

α(x)
∣∣
KI

=

pαI +1∑
k=1

pαI +1∑
l=1

αI,k,lψIx,k(x)ψIy,l(y).

I and its 2-norm is given by (in planar geometry):

EtotI =

pαI +1∑
k,l=1

α
2
I,k,l =

pαI +1∑
r=1

ErI , E
r
I :=

∑
max(k,l)=r

α
2
I,k,l,

I while the quantity wrI =

√
Er
I
Etot
I

will measure the relative ’weight’ of the r− degree modes

I Given an error tolerance εI > 0 for all I = 1, . . . , N, at each time step repeat following
steps:

1) compute wpi

2.1) if wpi ≥ εi, then
2.1.1) set pi(α) := pi(α) + 1
2.1.2) set αi,pi = 0, exit the loop and go the next element

2.2) if instead wpi < εi, then
2.2.1) compute wpi−1

2.2.2) if wpi−1 ≥ εi, exit the loop and go the next element
2.2.3) else if wpi−1 < εi, set pi(α) := pi(α)− 1 and go back to 2.2.1.



Potential of p−adaptivity for atmospheric modelling applications

I No remeshing required of many physical quantities like orography
profiles, data on land use and soil type, land-sea masks.

I Completely independent resolution for each single model variable.

I Easier coupling with SL technique, especially on unstructured meshes
(no need to store two meshes).

I Possibility also of static p-adaptation: e.g. reduced p as counterpart of
reduced grid, i.e. locally imposed p controlling the local Courant number
(=⇒ significant #gmres-iterations reduction).

I Main critical issue: dynamic load balancing is mandatory for massively
parallel implementations.



Solid body rotation on the sphere

120× 60 elements, max pc = 4, ∆t = 7200s, Cvel,x ≈ 400, Cvel,y ≈ 4



Deformational flow on the sphere (adapted from Nair, Lauritzen 2010)

80× 40 elements, max pc = 4, ∆t = 1800s



Combination of static + dynamic p-adaptation: Williamson’s test 6
64× 32 elements, maxph = 4, ∆t = 900s (Ccel ≈ 83 without adaptivity).

#gmres-iterations(ph = adapted)

#gmres-iterations(ph = uniform)
≈ 13%, ∆

n
dof =

∑N
I=1(pnI + 1)2

N(pmax + 1)2
≈ 45%.



Williamson’s test 6: time convergence rate and p-adaptation efficiency
I Relative errors at tf = 15 days for different number of elements, with

respect to NCAR spectral model solution at resolution T511:

Nx ×Ny ∆t[min] l1(h) l2(h) l∞(h) qemp2

10× 5 60 2.92× 10−2 3.82× 10−2 6.75× 10−2 -
20× 10 30 5.50× 10−3 6.80× 10−3 1.11× 10−2 2.4
40× 20 15 1.40× 10−3 1.80× 10−3 3.20× 10−3 2.0

I Relative differences btw adaptive (tol. ε = 10−2) and nonadaptive
solution at tf = 15 days:

adaptivity l1(h) l2(h) l∞(h)

static 2.182× 10−4 3.434× 10−4 2.856× 10−4

static + dynamic 3.407× 10−4 4.301× 10−4 7.484× 10−4

I CPU time: static and dynamic p-adaptive solution execution time is
around 24% of that for nonadaptive solution.

I for details on these p-adaptive experiments G. Tumolo, L. Bonaventura,
Quarterly J. Royal Met. Soc., 2015.



Rossby Haurwitz wave velocity field

120× 60 elements, max pc = 4, ∆t = 900s, Cvel,x ≈ 1



Finite Volumes
I Ωh = {Ki, i = 1, . . . ,m}, called mesh, is a partition of Ω in non-overlapping control

volumes KI such that Ω =
⋃m
i=1Ki;

h = maxidiam(Ki) is a measure of the size of the elements of Ωh.

I in order to derive a discretized problem, the original continuous problem is rewritten in
divergence (conservation) form:

∂ψ

∂t
+∇ · F (ψ) = S

and integrated over each control volume Ki,∫
Ki

∂ψ

∂t
dx +

∫
Ki

∇ · F (ψ) dx =

∫
Ki

S dx

I and the Gauss theorem is applied, to obtain:

d

dt

∫
Ki

ψ dx +

∫
∂Ki

n · F (ψ) dx =

∫
Ki

S dx

I if ϕi(t) ≈ 1
|Ki|

∫
Ki

ψ(x, t) dx and numerical fluxes F̂ are introduced in order to recover
approximated fluxes at the cell edges from the cell averaged values ϕi(t)
(flux reconstruction), then our finite volume scheme for the evolution of the cell averages
ϕi(t) in terms of their numerical fluxes across the control volume edges is:

|Ki|
dϕi(t)

dt
+

∫
∂Ki

n · F̂ (ϕ) dx =

∫
Ki

S dx, where ϕ = (ϕi)
m
i=1.



Finite Volumes: pros and cons

I inherently conservative;

I can be easily made to satisfy monotonicity and positivity constraints (i.e.
avoid negative tracer densities): they can incorporate slope limiters for
controlling spurious oscillations in the solution;

I Among others, MIT General Circulation Model and GFDL dynamical
core are based on finite volume approach;

I they are very robust and are heavily used in other fields (e.g. industrial
applications);

I mostly low order accurate (third order or less): to have high order finite
volume schemes, i.e. high order flux reconstruction, large stencils are
needed.



Time discretization techniques

I The time continuous solution ϕi(t), t ∈ [0, tf ] is approximated through
Finite Differences, by introducing a timestep ∆t = tf/n and a set of
discrete time levels tk = k∆t, k = 0, . . . , n

I numerical methods for ODE’s provide an approximated solution (fully
discrete!) ϕki , k = 0, . . . , n

I main approches include:

I explicit schemes
I semi-implicit schemes
I semi-Lagrangian shemes

I the choice of ∆t cannot generally be made based only on accuracy or
efficiency considerations, but must also comply with numerical stability
criteria, such as the CFL condition



Explicit schemes

I pro: they do not require the solution of a system at each timestep to
update the solution from one discrete time level to the next;

I con: they are affected by severe stability conditions on the size of ∆t

I example: one of the most popular explicit time discretization is the
leapfrog. It is a multistep method (three time levels scheme) derived by
approximating the time derivative by a centered difference
approximation:

ϕk+1
i − ϕk−1

i

2∆t
= Lh(ϕk)i

presence of a computational mode, to be properly filtered (Asslin filter)

I efficiency of simple explicit schemes can be improved through the
"split-explicit“ or ”mode splitting" technique: terms responsible for the
fastest waves motion are treated separately, still explicitly, but emplying a
substepping procedure with a smaller timestep.



Semi-implicit schemes
I an implicit discretization is selectively applied only to the terms

responsible for the fastest waves motion. Remaining terms are treated
explicitly.

I pro: only mild stability restrictions

I con: they do require the solution of a (generally linear) system at each
timestep to update the solution from one discrete time level to the next.
This can affect scalability.

I one of the most widely used implicit methods is the Crank-Nicolson
scheme, defined as:

ϕk+1
i − ϕki

∆t
= αLh(ϕk+1)i + (1− α)Lh(ϕk)i

with α ∈ [0, 1] averaging parameter: stability is guaranteed for
α ∈ [1/2, 1],
second order accuracy for α = 1/2.

I also known as IMEX (implicit- explicit) especially in the Runge-Kutta
framework.

I possible variant are HEVI methods (Horizontally Explicit Vertically
Implicit).



Semi-Lagrangian schemes

I SL method is a discretization approach that links the spatial and time
discretization for advection equations.

I the governing equations can be written in advective form:

dψ

dt
= L̂(ψ)

where dc
dt

= ∂c
∂t

+ u ·∇c is the Lagrangian derivative of c = c(x, t)

I then its SL discretization takes the form

ϕk+1
i − ϕki,∗

∆t
= Lh(ϕk)i,∗

where ϕki,∗ denote an approximation of ψ(x∗, tk)
and x∗ = X(tk; tk+1,xi) denotes the solution at t = tk of

dX(t; tk+1,xi)

dt
= u(X(t; tk+1,xi), t) (12)

with initial datum X(tk+1; tk+1,xi) = xi at time t = tk+1.
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