Design and framework of long-range (seasonal) prediction systems

Arun Kumar Climate Prediction Center College Park, Maryland, USA arun.kumar@noaa.gov

Outline

- What is long-range prediction and what makes long-range (seasonal) prediction possible?
- Methods for making seasonal prediction
- An example of seasonal prediction system: NCEP Climate Forecast System version 2 (CFSv2)
- Summary

There is always a spread (uncertainty) in forecasts!

- Non-linear dynamical systems sensitivity to specification of initial conditions
- Deterministic chaos
- Uncertainty could be better quantified, but can never be removed

•
$$dx/dt = \sigma (y - x)$$

•
$$dy/dt = x (\rho - z) - y$$

•
$$dz/dt = xy - \beta z$$

- There is always a spread (uncertainty) in forecasts...
- This forecast uncertainty is quantified using ensemble prediction approach where a collection of forecasts is initiated from small perturbations in the initial conditions
- Evolution of individual forecasts in the ensemble results in a collection of future outcomes which can be quantified using a probability density function (PDF)

Example of forecast spread: ENSO Prediction

Characterizing seasonal prediction

- There is a forecast PDF of possible outcomes for a specific season (for which we intend to make prediction).
- There is a climatological PDF based on aggregation of all seasons.
- These PDF depend on
 - Season
 - Variable
 - Location
- Seasonal prediction depends our ability to differentiate PDF of forecast PDF from the climatological PDF

Characterizing seasonal prediction

What lends predictability in long-range predictions?

- Initial conditions
 - Weather prediction
 - ENSO prediction
- Influence of boundary conditions
 - Anomalous SSTs \rightarrow Influence on atmospheric variability
- Influence of external forcings
 - Changes in CO_2

What provides <u>skill</u> in seasonal predictions

• It is our ability to distinguish PDF of outcomes for the season to be predicted from the corresponding climatological PDF

- Differences in the PDF can come from differences in various moments of the PDF
 - Mean
 - Spread
 - Skewness

Examples of high/low prediction skill

Outline

- What is seasonal prediction and what makes seasonal prediction possible?
- Methods for making seasonal prediction
- An example of seasonal prediction system: NCEP Climate Forecast System version 2 (CFSv2)
- Summary

Seasonal Prediction Methods

- Empirical prediction tools
 - Advantages
 - Trained based on historical observations
 - Unbiased
 - Simple and computationally efficient
 - Disadvantages
 - Limited by observational data
 - Mostly depend on linear relationships
 - Non-stationarity in climate is hard to include
 - Cannot handle unprecedented situations

Seasonal Prediction Methods

• Dynamical Prediction Tools

- Advantages
 - Linearity and non-stationarity is not an issue
 - Easier to construct PDF of seasonal mean state
 - Easier to handle unprecedented situations
- Disadvantages
 - Computationally expensive and require a large infrastructure
 - Forecast systems have biases that requires special attention
- Properties of empirical and dynamical prediction tools are complementary, and in general, and generally both are used in the development of final forecast
- This is the current practice used by several operational centers, e.g., prediction of monsoon rainfall by the IMD

Outline

- What is seasonal prediction and what makes seasonal prediction possible?
- Methods for making seasonal prediction
- An example of seasonal prediction system: NCEP Climate Forecast System version 2 (CFSv2)
- Summary

Components of a Seasonal Forecast System

- Real-time forecasts
 - Initialization
 - Bias correction and calibration of real-time forecasts (uses hindcasts)
 - Forecast dissemination
 - Verification
- Hindcasts
 - Skill assessment of the prediction system
 - Assessment of time-dependent biases

Initialization

- Various components of the forecast system need to be initialized from their observed state
 - Atmosphere (temperature; humidity; winds)
 - Ocean (temperature; salinity; ocean currents)
 - Land (soil moisture; snow)
 - Sea ice (extent; thickness)
- Initialization is done from the Climate Forecast System Reanalysis (CFSR) that provides a consistent 3-dimensional analysis of various components of the Earth System
- After initialization, forecast system is run to nine months into the future

Real-time forecasts: CFSv2

- Four nine month forecasts every day
- 120 seasonal forecasts in a month
- Real-time forecasts are constructed based on forecasts from latest 10 days of initial conditions, i.e., an ensemble of 40 forecasts is used for developing real-time seasonal predictions
- Lagged ensemble provides an estimate of PDF of seasonal mean states

Real-time forecasts

- Configuration of real-time forecasts generally differs from their hindcast counterpart
 - More frequent
 - Larger ensembles
- Consistency in the analysis of initial conditions, particularly for slowly varying components of the Earth System (SST, soil moisture) is crucial!

Hindcasts

• Hindcasts – Run the real-time forecast system over historical cases

• Run the forecast system over last thirty years (1981-2010)

• Four nine months forecast every 5th day of the calendar

• 72 forecasts every year

Hindcasts

- What is the purpose of hindcasts?
 - Provides an assessment of the skill of the seasonal forecast system
 - Because of model biases
 - Real-time forecasts have to be bias corrected
 - Hindcasts provide the data set for bias correction
 - Hindcasts are used to develop initial month, and lead-time dependent model climatology
 - Calibration of real-time forecasts

Skill Assessments

- Based on 30-year hindcast, skill of the CFSv2 can be assessed for
 - Predicting sea surface temperature anomalies
 - Predicting various SST indices that are important for seasonal predictions,
 e.g., Nino 3.4 SST index
 - Surface quantities over land, e.g., precipitation and surface temperatures
 - Other variables
 - Soil moisture
 - Sea ice

Skill Assessment: SST

Anomaly Correlation

-0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Skill Assessment: Surface Temperature

Anomaly Correlation

-0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Skill Assessment: Precipitation

Anomaly Correlation

Bias Correction and Calibration

- Bias correction
 - Correct for differences in observed and predicted mean state
 - Adjust if variability between observations and predictions differs
- Calibration
 - Adjust predicted anomaly based on assessment of past skill (e.g., from hindcast data set)
 - If past skill is close to zero, make the forecast PDF same as the climatological
 PDF

Model bias

Forecast Dissemination

- Graphical products
 - Bias corrected seasonal mean anomalies
 - Normalized anomalies
 - Bias corrected anomalies with skill mask
- Forecast and hindcast gridded data
 - Real-time forecasts
 - Hindcast data available via several outlets
 - Data could be used for statistical downscaling

Graphical Products: SST Anomaly

Graphical Products: Standardized SST Anomalies

Graphical Products: SST Anomalies with Skill Mask

Outline

- What is seasonal prediction and what makes seasonal prediction possible?
- Methods for making seasonal prediction
- An example of seasonal prediction system: NCEP Climate Forecast System version 2 (CFSv2)
- Summary

Summary

• Seasonal prediction system are fairly mature

• Skill of prediction is limited, but it is better than a random guess

- Hindcast and real-time forecast data is a huge data base that can be used for various research and analyses purposes, for example,
 - Analysis and predictability of extremes
 - Influence of various climatic factors on extremes