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There is always a spread (uncertainty) in forecasts!

 Non-linear dynamical systems sensitivity to
specification of initial conditions

« Deterministic chaos

« Uncertainty could be better quantified, but can

never be removed

« dx/dt = o (y - xX)
» dy/dt=x(p-2) -y
- dz/dt =xy-B z
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 There is always a spread (uncertainty) in forecasts...

« This forecast uncertainty is quantified using ensemble prediction
approach where a collection of forecasts is initiated from small
perturbations in the initial conditions

- Evolution of individual forecasts in the ensemble results in a
collection of future outcomes which can be quantified using a
probability density function (PDF)
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Example of forecast spread: ENSO Prediction
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Characterizing seasonal prediction

 There is a forecast PDF of possible outcomes for a specific season
(for which we intend to make prediction).

 There is a climatological PDF based on aggregation of all seasons.

« These PDF depend on

— Season
— Variable
— Location

« Seasonal prediction depends our ability to differentiate PDF of
forecast PDF from the climatological PDF
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Characterizing seasonal prediction
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What lends predictability in long-range predictions?

« Initial conditions

— Weather prediction
— ENSO prediction

« Influence of boundary conditions

— Anomalous SSTs - Influence on atmospheric variability

« Influence of external forcings
— Changes in CO,
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What provides skill in seasonal predictions

« It is our ability to distinguish PDF of outcomes for the season to be

predicted from the corresponding climatological PDF

 Differences in the PDF can come from differences in various

moments of the PDF
— Mean
— Spread

— Skewness
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Examples of high/low prediction skill
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Seasonal Prediction Methods

« Empirical prediction tools

— Advantages
« Trained based on historical observations
« Unbiased
« Simple and computationally efficient
— Disadvantages
« Limited by observational data
« Mostly depend on linear relationships
« Non-stationarity in climate is hard to include

« Cannot handle unprecedented situations
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Seasonal Prediction Methods

« Dynamical Prediction Tools

— Advantages
» Linearity and non-stationarity is not an issue

Easier to construct PDF of seasonal mean state
Easier to handle unprecedented situations

— Disadvantages
Computationally expensive and require a large infrastructure

Forecast systems have biases that requires special attention

Properties of empirical and dynamical prediction tools are complementary, and in

general, and generally both are used in the development of final forecast
This is the current practice used by several operational centers, e.g., prediction of

monsoon rainfall by the IMD
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Components of a Seasonal Forecast System

« Real-time forecasts
« Initialization
« Bias correction and calibration of real-time forecasts (uses hindcasts)
« Forecast dissemination

« \erification

« Hindcasts

« Skill assessment of the prediction system

« Assessment of time-dependent biases
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Initialization

« Various components of the forecast system need to be initialized from

their observed state

— Atmosphere (temperature; humidity; winds)
— Ocean (temperature; salinity; ocean currents)
— Land (soil moisture; snow)

— Sea ice (extent; thickness)

« Initialization is done from the Climate Forecast System Reanalysis (CFSR)
that provides a consistent 3-dimensional analysis of various components
of the Earth System

« After initialization, forecast system is run to nine months into the future
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Real-time forecasts: CFSv2

 Four nine month forecasts every day

« 120 seasonal forecasts in a month

- Real-time forecasts are constructed based on forecasts from latest
10 days of initial conditions, i.e., an ensemble of 40 forecasts is
used for developing real-time seasonal predictions

 Lagged ensemble provides an estimate of PDF of seasonal mean

states
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Real-time forecasts

« Configuration of real-time forecasts generally differs from their

hindcast counterpart

— More frequent

— Larger ensembles

« Consistency in the analysis of initial conditions, particularly for
slowly varying components of the Earth System (SST, soil

moisture) is crucial!
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Hindcasts

« Hindcasts — Run the real-time forecast system over historical cases

« Run the forecast system over last thirty years (1981-2010)

« Four nine months forecast every 5th day of the calendar

« 72 forecasts every year
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Hindcasts

« What is the purpose of hindcasts?

— Provides an assessment of the skill of the seasonal forecast system

— Because of model biases
« Real-time forecasts have to be bias corrected
« Hindcasts provide the data set for bias correction
« Hindcasts are used to develop initial month, and lead-time dependent model

climatology

— Calibration of real-time forecasts
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Skill Assessments

« Based on 30-year hindcast, skill of the CFSv2 can be assessed for
— Predicting sea surface temperature anomalies
— Predicting various SST indices that are important for seasonal predictions,
e.g., Nino 3.4 SST index
— Surface quantities over land, e.qg., precipitation and surface temperatures

— Other variables
« Soil moisture

« Sea ice
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Skill Assessment: SST

Anomaly Correlation
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Skill Assessment: Surface Temperature

Anomaly Correlation

CFSv2 Correlation TZm
Initial month: May 1982-2009
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Skill Assessment: Precipitation

Anomaly Correlation

CFSv2 Correlation Precipitation
Initial month: May 1982-2009
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Bias Correction and Calibration

 Bias correction

— Correct for differences in observed and predicted mean state
— Adjust if variability between observations and predictions differs

e Calibration

— Adjust predicted anomaly based on assessment of past skill (e.g., from
hindcast data set)

— If past skill is close to zero, make the forecast PDF same as the climatological
PDF
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Model bias
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Forecast Dissemination

« Graphical products
— Bias corrected seasonal mean anomalies
— Normalized anomalies

— Bias corrected anomalies with skill mask

« Forecast and hindcast gridded data

— Real-time forecasts
— Hindcast data available via several outlets

— Data could be used for statistical downscaling
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Graphical Products: SST Anomaly

A7

CFSv2 seasonal SST anomalies (K) NWS /NCEP /CPC
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Graphical Products: Standardized SST Anomalies
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Graphical Products: SST Anomalies with Skill Mask
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NWS/NCEP/CPC
Jun—Jul—Aug 2014 Initial conditions: 30Mar2014—8Anr2014

CFSv2 seasonal standardized SST anomalies

(Arecs of expected skill less
than 0.3 are shaded in grey.)
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Summary

« Seasonal prediction system are fairly mature
« SKkill of prediction is limited, but it is better than a random guess

« Hindcast and real-time forecast data is a huge data base that can

be used for various research and analyses purposes, for example,
— Analysis and predictability of extremes

— Influence of various climatic factors on extremes
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