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1 The hydrostatic primitive equations1

The ocean is a forced-dissipative dynamical system. Its space-time range of motions extends2

from the millimetre/second scale of viscous dissipation to the global/centennial scale of climate3

variations and anthropogenic change. The thermo-hydrodynamical ocean equations are nonlinear,4

admitting turbulent processes that affect a cascade of mechanical energy and tracer variance across5

these scales. With increasing integrity of numerical methods and subgrid scale parameterizations,6

and with enhancements in computer power, ocean general circulation models (OGCMs) have7

become an essential tool for exploring dynamical interactions within the ocean. OGCMs are also8

useful to investigate how the ocean interacts with other components of the earth system such as9

the atmosphere, sea ice, ice shelves, and solid earth. The discrete equations of an OGCM are10

based on the hydrostatic primitive equations. These equations are formulated by starting from11

the thermo-hydrodynamical equations for a mass conserving fluid parcel and then assuming the12

vertical momentum equation reduces to the inviscid hydrostatic balance. We summarize the13

basics in this section, with far more details available in Griffies (2004), Vallis (2006), and Griffies14

and Adcroft (2008).15
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1.1 Mechanical and thermodynamical framework1

We formulate the ocean equations by considering a continuum fluid parcel of density ρ, volume2

δV, mass δM = ρ δV, and center of mass velocity3

v = u + ẑ w = (u, v,w), (1)

with the velocity taken in the frame rotating with the planet. It is most convenient to focus on4

parcels that conserve mass as they move through the fluid. The linear momentum of the parcel,5

v δM, evolves according to Newton’s Second Law. Forces affecting the large-scale ocean circulation6

arise from Coriolis (rotating frame), gravity, pressure, and friction, thus leading to the momentum7

budget8

ρ
( D
Dt

+ 2Ω∧
)

v = −(∇ p + ρ∇Φ) + ρF . (2)

In this equation, D/Dt is the time derivative taken in the material frame of the moving parcel, Ω9

is the rotation vector for the spinning planet, p is the pressure, Φ is the gravitational geopotential,10

and ρF is the frictional force. The thermo-hydrodynamical equations result from coupling the11

momentum budget to the First Law of thermodynamics, with the First Law used to determine the12

evolution of enthalpy, or heat, of the parcel.13

The large-scale ocean circulation is generally well approximated by motion of a stably stratified14

shallow layer of fluid on a rapidly rotating sphere in hydrostatic balance (Vallis, 2006). The15

hydrostatic ocean primitive equations form the starting point from which OGCM equations are16

developed, and we write them in the following manner1
17

horizontal momentum ρ
( D
Dt

+ f ∧
)
u = −∇zp + ρF (3a)

hydrostatic balance
∂p
∂z

= −ρ g (3b)

mass continuity
Dρ
Dt

= −ρ∇ · v (3c)

tracer conservation ρ
(DC

Dt

)
= −∇ · J (3d)

equation of state ρ = ρ(Θ,S, p). (3e)

We now detail terms appearing in these equations.18

1.2 Linear momentum budget19

Equation (3a) provides the budget for horizontal linear momentum. For a hydrostatic fluid, the20

Coriolis force takes the form −ρ f ẑ ∧ u, with Coriolis parameter21

f = f ẑ = (2 Ω sinφ) ẑ, (4)

where ẑ is the local vertical direction oriented perpendicular to a surface of constant geopotential,22

Ω ≈ 7.29 × 10−5s−1 is the rotational rate of the earth, and φ is the latitude. Linear momentum is23

also effected by the downgradient horizontal pressure force, −∇z p. Finally, irreversible exchanges24

1“Primitive” here refers to the choice to represent the momentum budget in terms of the velocity field rather than
the alternative vorticity and divergence.
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of momentum between parcels, and between parcels and the ocean boundaries, are parameterized1

by the friction operator ρF . Laplacian and/or biharmonic operators are most commonly used for2

the friction operator (e.g., Smagorinsky (1993), Griffies and Hallberg (2000), Large et al. (2001),3

Jochum et al. (2008), Fox-Kemper and Menemenlis (2008)).4

Equation (3b) is the vertical momentum equation as approximated by the inviscid hydrostatic5

balance, with p the hydrostatic pressure and g the gravitational acceleration. The gravitational ac-6

celeration is generally assumed constant in space and time for large-scale ocean studies. However,7

space-time variations of gravity are important when considering tidal motions, as well as changes8

to the static equilibrium sea level as occur with land ice melt (Section 1.6).9

1.3 Mass continuity and the budget for a conservative tracer10

The mass continuity equation (3c) arises from constancy of mass for the fluid parcel, D (δM)/Dt = 0,11

as well as the kinematic result that the infinitesimal parcel volume is materially modified according12

to the velocity divergence13

1
δV

D (δV)
Dt

= ∇ · v. (5)

The concentration of a material tracer, C, represents the mass of trace constituent per mass of the14

seawater parcel15

C =

(
mass of tracer in parcel

mass of seawater in parcel

)
. (6)

Notably, the evolution equation for potential enthalpy (or Conservative Temperature, Θ) takes the16

same mathematical form as the tracer equation for a conservative material tracer such as salt (Mc-17

Dougall, 2003). Consequently, we can consider Conservative Temperature as the “concentration”18

of heat.19

Although the parcel mass is materially constant, the parcel tracer content and heat are generally20

modified by subgrid scale mixing or stirring in the presence of concentration gradients. The21

convergence of the tracer flux vector J incorporates such mixing and stirring processes in the22

tracer equation (3d). Common means to parameterize these subgrid processes involve diffusive23

mixing across density surfaces in the ocean interior (diapycnal diffusion as reviewed in MacKinnon24

et al. (2013)); mixing across geopotential surfaces in the well mixed surface boundary layer (e.g.,25

Large et al. (1994)); diffusive mixing along neutral tangent planes in the interior (Solomon (1971),26

Redi (1982)); and eddy-induced advection in the ocean interior (e.g., Gent and McWilliams (1990),27

Gent et al. (1995), Griffies (1998), Fox-Kemper et al. (2013)). Given knowledge of the temperature,28

salinity, and pressure, we make use of an empirically determined equation of state (equation (3e))29

to diagnose the in situ density (IOC et al., 2010).30

To formulate the discrete equations of an ocean model, we transform the material parcel31

equations into Eulerian flux-form equations. The flux-form provides a framework for numerical32

methods that properly conserve mass and linear momentum according to fluxes across grid cell33

boundaries. In contrast, discretizations based on the material form, also known as the “advective”34

form, generally lead to spurious sources of scalars and momentum. Spurious scalar sources (e.g.,35

mass, heat, salt, carbon) are particularly unacceptable for climate simulations. Replacing the36

material time derivative by the Eulerian time derivative and advection37

D
Dt

=
∂
∂t

+ v · ∇ (7)
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transforms the continuity equation (3c) into1

∂ρ

∂t
= −∇ · (v ρ). (8)

Likewise, combining the tracer equation (3d) and continuity equation (8) leads to the Eulerian2

flux-form tracer equation3

∂ (ρC)
∂t

= −∇ · (ρCv + J ). (9)

Notably, there are no subgrid scale terms on the right hand side of the mass continuity equation (8).4

This result follows since we formulated the equations for a mass conserving fluid parcel, and made5

use of the center of mass velocity, v (in Section II.2 of DeGroot and Mazur (1984), they refer to this6

as the “barycentric” velocity). Operationally, this compatibility between mass and tracer budgets7

is ensured so long as the subgrid scale flux J vanishes in the presence of a spatially constant tracer8

concentration, in which case the tracer equation (9) reduces to mass continuity (8).9

1.4 Oceanic Boussinesq approximation10

The oceanic Boussinesq approximation is based on the observation that dynamically relevant11

density changes (i.e., changes impacting horizontal pressure gradients) are quite small in the12

ocean, thus motivating an asymptotic expansion around a global mean density (see Section 9.313

of Griffies and Adcroft (2008)). Operationally, the Boussinesq approximation replaces nearly all14

occurrances of the in situ density in the primitive equations with a constant Boussinesq reference15

density, ρo. The key exception is the hydrostatic balance, where the full density is computed by16

the equation of state.17

When making the Boussinesq approximation, the mass continuity equation (3c) reduces to18

volume conservation, so that the Boussinesq velocity has zero divergence19

∇ · v = 0. (10)

Notably, a divergent-free velocity filters out all acoustic modes.20

The Boussinesq approximation is based on the scaling |vd
| � |v|, where v is the prognostic21

velocity appearing in the Boussinesq momentum equations, and vd is a divergent velocity field22

that balances material changes in density through the continuity equation. That is, the divergent23

velocity field satisfies24

Dρ
Dt

= −ρ∇ · vd, (11)

where to leading order the material time derivative only involves the non-divergent velocity. It is25

in this manner that the oceanic Boussinesq approximation admits material density changes from26

thermohaline effects (i.e., changes in temperature and salinity), which in turn impact the large-scale27

circulation.28

1.5 Virtual salt fluxes versus real water fluxes29

A virtual tracer flux ocean model does not transfer water across the ocean boundary. To param-30

eterize impacts from water fluxes on density, salt is transferred across the boundary rather than31

water (Huang (1993), Griffies et al. (2001), Yin et al. (2010b)). Virtual tracer fluxes are typically32

associated with rigid lid models, whose volume never changes. Additionally, some free surface33

ocean climate models also use virtual tracer fluxes (e.g., see Table 1 in Griffies et al. (2014)).34
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In ocean models, the transport of salt is not associated with a change in ocean mass or volume;1

i.e., the salt flux does not contribute to the mass flux, Qm, crossing the ocean boundary. Hence,2

there is no direct mass signal arising from the use of virtual tracer fluxes. Correspondingly, there3

is no direct bottom pressure nor sea level signal in response to a meltwater flux. The only signal4

arises from density changes, which are transmitted through baroclinic waves (Stammer, 2008).5

This limitation further precludes virtual tracer flux models from being used to study changes in6

the static equilibrium sea level associated with mass redistributions (Section 1.6).7

Another limitation of virtual tracer flux models arises from the potentially different responses8

of the overturning circulation to meltwater pulses. As shown by Yin et al. (2010b), virtual salt flux9

models tend to exaggerate their freshening effect relative to the response seen in real water flux10

models. As changes to the Atlantic overturning are thought to be important for regional sea level11

changes (Yin et al., 2009; Lorbacher et al., 2010), it is useful to remove unnecessary assumptions,12

such as virtual tracer fluxes, when considering model responses to climate change associated with13

meltwater events.14

1.6 Dynamics with a generalized geopotential15

Inhomogeneities in mass distributions cause the earth’s gravity field to be non-spherical. These16

inhomogeneities generally evolve over geological time scales, in which case they are assumed17

fixed for ocean circulation modelling. However, there is increasing interest in understanding how18

the ocean responds to mass redistributions associated with melting land ice, with such changes19

occurring on climate time scales. In particular, such mass redistributions alter the static equilibrium20

sea level (Farrell and Clark (1976) and Mitrovica et al. (2001)), which defines the surface of a resting21

ocean. As land ice melts, changes to the static equilibrium sea level will emerge from among22

changes in dynamical sea level (see Kopp et al. (2010), Slangen et al. (2012), and Slangen et al.23

(2014)). We are thus prompted to formulate the dynamical equations in the presence of a general24

geopotential field. This exercise also proves sufficient for considering astronomical tidal forcing.25

1.6.1 Geopotentials equal to depth surfaces26

The geopotential traditionally used for ocean climate modelling incorporates the effects from27

gravitational attraction as well as the centrifugal force (e.g., see chapter 2 of Vallis (2006)). The28

effective gravitational field is conservative, so that the gravitational acceleration of a fluid parcel29

can be represented as the gradient of a geopotential,30

g = −∇Φ, (12)

where Φ (ρ δV) is the gravitational potential energy of a fluid parcel. Surfaces of constant geopo-31

tential define surfaces on which the effective gravitational acceleration is constant. In most ocean32

circulation studies, the geopotential is33

Φ = g z, (13)

with g ≈ 9.8 m s−2 the typical gravitational acceleration used in ocean models. In this case, the34

local vertical direction, ẑ, is parallel to the effective gravitational acceleration, ẑ ∧ g = 0. That is,35

surfaces of constant vertical position, z, are geopotential surfaces.36

1.6.2 Geopotentials distinct from depth surfaces37

For more general gravitational fields, we write the geopotential as38

Φ = g (z −H), (14)
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whereH = H(x, y, z, t) incorporates perturbations to the standard geopotential arising from move-1

ment of mass and/or astronomical tidal forces.2 In the presence of this general geopotential, con-2

stant depth surfaces, measured by the vertical coordinate z, are no longer equivalent to constant3

geopotential surfaces. That is, the vertical direction, ẑ, is not parallel to the effective gravitational4

acceleration,5

g = −∇Φ = −g (ẑ − ∇H) , (15)

so that6

ẑ ∧ g = ẑ ∧ g∇H , 0. (16)

For applications where gradients inH dominate the gravity field, it may prove useful to transform7

the dynamical equations into a geopotential coordinate frame, so that the new vertical direction is8

parallel to gravity. However, for our purposes, we retain the usual depth coordinate and examine9

the modifications arising from the generalized geopotential. This approach follows that used for10

global tide models (e.g., Arbic et al. (2004)).11

Making use of the geopotential (14) within the linear momentum equation (2), and then as-12

suming hydrostatic balance holds for the vertical direction, leads to13

ρ
( D
Dt

+ ẑ f ∧
)

u = −(∇z p + ρ∇z Φ) + ρF (17a)

∂p
∂z

= −ρ g
(
1 −

∂H
∂z

)
. (17b)

Note that we continue to orient the Coriolis force according to the local vertical direction, ẑ.14

However, the pressure gradient is now aligned according to constant geopotential surfaces15

∇Φp = ∇z p + ρ∇z Φ, (18)

where ∇zΦ = −g∇zH . Buoyancy appearing in the hydrostatic balance is modified by depth16

dependence ofH . Its appearance suggests we introduce a modified gravitational acceleration,17

g′ = g
(
1 −

∂H
∂z

)
. (19)

Alternatively, we may retain a constant gravitational acceleration and introduce the modified18

density19

ρ(Φ) = ρ

(
1 −

∂H
∂z

)
, (20)

in which case the hydrostatic balance becomes20

∂p
∂z

= −ρ(Φ) g. (21)

No OGCM has incorporated a depth dependent perturbation geopotential field. Indeed,21

it remains a research question to both formulate the model equations for an ocean with this22

generalized geopotential, and to examine its role in modifying circulation in the presence of land23

ice melt. Hence, for simplicity, in the remainder of this chapter we assume24

∂H
∂z

= 0. (22)

2For astronomical tides,H = H(x, y, t) is depth independent (e.g., Section 9.8 in Gill, 1982).
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The case ofH = H(x, y, t) is mathematically identical to the astronomical tide forcing problem.1

Nonetheless, there has been no consideration of how ocean circulation is impacted by an online2

interactive calculation of H under land ice melt scenarios. Only uncoupled studies have been3

considered, such as those from Kopp et al. (2010) and Slangen et al. (2012). When coupling4

circulation and gravity models, we expect geopotential changes to propagate via external gravity5

waves (Section 1.8.2). Consequently, sea level will adjust within a few days towards the new static6

equilibrium at z = H . If the external mode is cleanly split from internal modes, then we expect7

no large-scale circulation response to the changing geopotential. However, if there are nontrivial8

changes to the static equilibrium sea level, particularly near high latitude deep water formation,9

there may be noticeable impacts on the baroclinic circulation. In that case, a coupled circulation10

and gravity calculation is required.11

1.7 Generalized vertical coordinates12

As discussed in Griffies et al. (2000), Griffies et al. (2010), Griffies and Treguier (2013), there are13

many considerations when choosing vertical the coordinate. Generalized vertical coordinates have14

thus become a powerful tool for ocean models given their flexibility towards varying applications.15

They have furthermore become increasingly sophisticated largely due to advances in the Arbitrary16

Lagrangian-Eulerian (ALE) method. ALE was pioneered in the ocean modelling community by17

Bleck (2002) (see also discussions by Bleck (2005), Adcroft and Hallberg (2006) and Griffies and18

Adcroft (2008)).19

We write a generalized vertical coordinates as20

s = s(x, y, z, t), (23)

where constant s surfaces monotonically partition the vertical. Transformations from the depth-21

based primitive equations to generalized vertical coordinates are detailed in Chapter 6 of Griffies22

(2004). We illustrate the technology by considering the geopotential-aligned pressure gradient23

(18), which transforms according to24

∇Φp = ∇z p + ρ∇z Φ (24a)

=

(
∇s − ∇sz

∂
∂z

)
p + ρ

(
∇s − ∇sz

∂
∂z

)
Φ (24b)

= ∇sp + ρ∇sΦ, (24c)

where we made use of the hydrostatic balance25

∂p
∂z

= −ρ
∂Φ
∂z
. (25)

The expression (24c) means the horizontal momentum equation (17a) remains form invariant26

under changes to the vertical coordinate.27

1.8 Fast and slow dynamics28

When developing an economical time steppling algorithm for the primitive equations, it is essential29

to decompose the dynamics into fast and slow components. Ideally, a decomposition will allow us30

to time step the fast modes using small time steps, required for numerical stability according to the31
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CFL constraint (e.g., Durran, 1999), while the slow modes can utilize longer time steps. In general,1

the CFL constraint means that for any signal of speed U, the time step ∆t used in an explicit time2

stepping scheme must be short enough so that3

U ∆t
∆x
≤ 1, (26)

where ∆x is the grid spacing in either of the horizontal or vertical directions. Hence, our time steps4

become smaller when the grid spacing is refined (∆x reduces) or when the signal speed increases.5

Fast and slow modes generally couple in the ocean, so any attempts to split between the modes6

is incomplete. This coupling necessitates requires careful treatment by the numerical schemes (see,7

for example, Killworth et al. (1991), Griffies et al. (2001), chapter 12 of Griffies (2004), Shchepetkin8

and McWilliams (2005), Hallberg and Adcroft (2009)). Our goal here is to outline steps required9

to split the dynamics and to then develop a time stepping algorithm. Assumptions built into the10

algorithms have a direct impact on how sea level dynamics is represented.11

1.8.1 Acoustic modes and gravity modes12

Acoustic modes are irrelevant for the general circulation. Given that they are faster than gravity13

waves, it is important to filter acoustic modes from an OGCM so to not be constrained by the CFL14

condition to take very small time steps. Critically, the vertically propagating acoustic models are15

filtered by the hydrostatic approximation. Yet a depth independent Lamb wave remains unfiltered,16

and appears in the non-Boussinesq hydrostatic equations.3 However, the Lamb mode does not17

offer any extra constraint on the time stepping beyond that from barotropic gravity waves (see18

DeSzoeke and Samelson (2002)).19

The next modes to consider are the gravity waves, both internal (also called baroclinic) and20

external (also called barotropic). An external gravity wave rapidly carries information about mass21

perturbations, which in turn affect the sea level (see Section 1.8.2). In contrast, internal gravity22

waves carry information about changes in density interfaces within the ocean interior. External23

gravity waves travel at speeds (g H)1/2 (H is the ocean depth), which in the deep ocean can be24

roughly 100 times faster than internal waves (e.g., 100 m s−1 versus 1 m s−1). To split between the25

external and internal motions, we may attempt a formal eigenmode decomposition (e.g., chapter26

6 of Gill (1982)). However, that approach works only when the flow is close to linear, which is27

not always the case in the real ocean. Furthermore, with topography, linear modes are strongly28

coupled, meaning that a modal decomposition is not theoretically available (Hallberg and Rhines,29

1996).30

1.8.2 Depth integrated kinematics and dynamics31

A practical means to split between external and internal modes is to depth integrate the prim-32

itive equations. The depth averaged motions largely capture the external motions, and depth-33

dependent deviations approximate internal motions. The art associated with these “split-explicit”34

methods concerns details of the time stepping algorithm, particularly for the fast depth integrated35

motions, as well as determining what portion of the dynamics to place in the fast versus slow36

equations.37

3All acoustic modes are filtered from the Boussinesq fluid due to the non-divergent condition satisified by the velocity
field.
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We expose some of the issues by formulating the depth integrated kinematics, which is based1

on a budget for the mass per horizontal area in a column of seawater2

∂
∂t

(∫ η

−H
ρdz

)
= −∇ ·Uρ + Qm. (27)

That is, the column mass per horizontal area changes according to the convergence of mass3

transported horizontally by the currents4

Uρ =

∫ η

−H
ρudz, (28)

and from mass crossing the ocean free surface, Qm, through precipitation, evaporation, sea ice5

melt/form, and river runoff. Combining this mass budget (a kinematical balance) to the hydrostatic6

balance (a dynamical balance) renders a prognostic equation for the difference between the bottom7

pressure and pressure applied to the ocean surface4
8

1
g
∂ (pb − pa)

∂t
= −∇ ·Uρ + Qm. (29)

Now consider the horizontal momentum equation for a grid cell, as realized by performing9

a depth integral over a grid cell of thickness dz (see section 12.2 of Griffies (2004) for relevant10

manipulations):11 (
∂
∂t

+ f ẑ ∧
)

(uρdz) = −dz∇Φp + G, (30)

where G contains advection and friction. To facilitate integrating over the ocean column, we write12

the pressure gradient in the form13

∇Φp = ∇sp + ρ∇sΦ = ρ∇s Φ′ − (ρ′/ρo)∇s p︸                    ︷︷                    ︸
slow

+ (ρ/ρo)∇ (pb + ρo Φb)︸                    ︷︷                    ︸
fast

, (31)

where pb is the bottom pressure, Φb = −g (H +H) is the bottom geopotential, and14

Φ′(z) = −g

z∫
−H

(
ρ − ρo

ρo

)
dz (32)

is a geopotential anomaly. The identity (31) can be readily derived by vertically integrating the15

hydrostatic balance (21) from the ocean bottom to an arbitrary depth. We have labelled terms in16

this pressure gradient as “slow” and “fast”, anticipating how they effect the dynamics.17

Now insert the pressure gradient (31) into the momentum budget (30), and then sum over the18

depth of the ocean to render19 (
∂
∂t

+ f ẑ ∧
)
Uρ = −

(
pb − pa

ρo g

)
∇ (pb + ρo Φb) + H , (33)

where pa is the pressure applied on the top of the ocean from the atmosphere, sea ice, or ice shelf,20

Uρ =
∑

uρdz (34)

4We later discuss the bottom and applied surface pressures in Section 2.2.
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is the discrete form of the depth integrated horizontal mass transport (see equation (28) for the1

continuous form), and we made use of the discrete hydrostatic balance2

g
∑

ρdz = pb − pa. (35)

The term H contains the vertical sum of G plus the depth integrated slow portion of the pressure3

gradient.4

1.8.3 Linear external gravity waves5

To help understand the free linear modes of the depth integrated system, we consider a linearized6

version of the depth integrated momentum and mass equations. Additionally, ignore drop nonlin-7

ear terms, the Coriolis force, and frictional forces, and assume the standard form of the geopotential8

Φ = g z. The result is the linear shallow water system9

∂Uρ

∂t
= −H∇pb (36a)

∂pb

∂t
= −g∇ ·Uρ, (36b)

Taking the time derivative of the transport equation (36a) and substituting into the time derivative10

of the bottom pressure equation (36b) leads to11

∂2pb

∂t2 = g H∇2pb. (37)

Likewise, we have12

∂2Uρ

∂t2 = g H∇ (∇ ·Uρ). (38)

Each of these equations admits linear wave solutions where the wave signal propagates with speed13

14

Cgravity = (g H)1/2. (39)

These waves transmit information about changes in the bottom pressure, or equivalently changes15

in the mass per area of a fluid column. Furthermore, assuming the ocean has a constant density,16

bottom pressure takes the form pb = ρo (H + η), so that waves in the bottom pressure arise from17

fluctuations in the sea surface.18

1.8.4 Split-explicit algorithm19

The essential features of a split-explicit algorithm involve time stepping the depth integrated mass20

budget (29) and momentum budget (33), making use of small time steps to stably resolve extrernal21

gravity waves. The slower dynamics is approximated by the full velocity field with the depth22

averaged velocity removed. The resulting depth dependent motions are dominated by internal23

gravity waves and advection. The slow dynamics can be integrated with a longer time step than24

the external motions, which is important since the slow dynamics is three-dimensional and so25

more expensive computationally. There are many details required to bring these ideas into a26

working algorithm. The interested reader can find further discussion in chapter 12 of Griffies27

(2004) and Section 11 of Griffies and Adcroft (2008), along with even more detailed and specialized28

discussions in Killworth et al. (1991), Griffies et al. (2001), Shchepetkin and McWilliams (2005),29

and Hallberg and Adcroft (2009).30
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2 Flavours of sea level tendencies1

The upper ocean is typically characterized by breaking surface gravity waves (e.g., Cavaleri et al.,2

2012), in which case there is no mathematically smooth ocean “surface”. Nonetheless, for large-3

scale hydrostatic modeling, and for large-scale observational oceanography, we define the upper4

ocean interface as a smooth, non-overturning, permeable, free surface5

z = η(x, y, t) ocean free surface. (40)

The ocean free surface provides our mathematical representation of sea level. Furthermore, the6

effects of turbulent wave breaking, which are inherently non-hydrostatic, are incorporated into7

parameterizations of air-sea boundary fluxes and upper ocean wave induced mixing.8

In this section, we explore how sea level changes in time. We already discussed this evolution9

when considering the fast and slow modes in Section 1.8. Here, we first derive kinematic expres-10

sions based on the mass continuity equation. We then make the hydrostatic approximation, which11

connects changes in sea level to changes in pressure at the ocean top and bottom boundaries.12

Notably, we here ignore changes in the land-sea boundaries (i.e., the ocean bottom at z = −H(x, y)13

is static). We also assume the geopotential takes the standard form, Φ = g z. We do not consider14

generalizations based on incorporating a modified gravity field introduced in Section 1.6. Material15

in this section borrows much from Griffies and Greatbatch (2012) and Griffies et al. (2014).16

2.1 Sea level tendencies and mass continuity17

We derive a kinematic expression of sea level evolution by integrating the mass continuity equa-18

tion (3c) over the full ocean depth, and making use of surface and bottom kinematic boundary19

conditions. The resulting sea level tendency is given by20

∂η

∂t
=

Qm

ρ(η)
− ∇ ·U −

η∫
−H

1
ρ

Dρ
Dt

dz, (41)

with21

U =

∫ η

−H
u dz (42)

the vertically integrated horizontal velocity. Equation (41) partitions sea level evolution into22

a boundary mass flux, Qm, which is the mass per time per horizontal area of precipitation -23

evaporation + runoff that crosses the ocean surface; the convergence of vertically integrated24

horizontal ocean currents; and material changes in density.25

The sea level equation (41) reveals that the direct impact on sea level from ocean currents is26

to redistribute ocean volume through the convergence term, −∇ · U. However, this term does27

not alter the global mean sea level, since its global integral vanishes. This equation thus offers a28

very useful analysis framework to study how physical processes impact on global mean sea level.29

Namely, the explicit appearance of ocean currents is eliminated when forming the global integral30

of equation (41), leaving only surface boundary fluxes and material density changes (Griffies and31

Greatbatch, 2012).32

The non-Boussinesq steric effect refers to sea level changes associated with material density33

changes34 (
∂η

∂t

)non-Bouss steric

= −

η∫
−H

1
ρ

Dρ
Dt

dz. (43)
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This term is absent in Boussinesq fluids (Section 1.4). That is, Boussinesq kinematics is based on1

conserving volume, not mass, and integrating over a seawater column leads to the Boussinesq sea2

level equation3 (
∂η

∂t

)bouss

=
Qm

ρo
− ∇ ·U. (44)

As discussed by Losch et al. (2004) and Griffies and Greatbatch (2012), Boussinesq and non-4

Boussinesq fluids capture very similar large-scale patterns of dynamical sea level.5 However,5

Boussinesq fluids require an adjustment of their prognosed sea level to capture the global mean6

of the non-Boussinesq fluid. For example, Greatbatch (1994) noted that a Boussinesq fluid will7

not alter its prognostic sea level under a uniform heating. Global mean sea level changes from8

heating are captured when retaining the mass conserving kinematics of a non-Boussinesq fluid.9

Fortunately, a time dependent global adjustment to the Boussinesq sea level is generally sufficient10

to recover the non-Boussinesq results (Greatbatch (1994), Griffies and Greatbatch (2012)).11

2.2 Sea level tendencies and the hydrostatic balance12

We now deduce relations for sea level evolution based on the hydrostatic balance (3b). Vertically13

integrating this balance from the ocean bottom at z = −H(x, y) to the surface at z = η(x, y, t), leads14

to the expression15

pb = pa + g
∫ η

−H
ρdz. (45)

The bottom pressure, pb, equals to the sum of the pressure applied at the sea surface, pa (e.g., from16

the atmosphere, sea ice, and ice shelf), plus the weight per horizontal area of seawater in the liquid17

ocean column. This balance holds instantaneously. Consequently, for example, adding mass to18

the ocean surface instantaneously increases bottom pressure, no matter how deep the ocean. Such19

instantaneous signal propagation results from assuming a hydrostatic balance, in which acoustic20

modes are removed (in effect, they have infinite speed). For a non-hydrostatic fluid, vertically21

propagating acoustic waves propagate the pressure signal at a finite speed.22

Taking the time derivative of the bottom pressure equation (45) renders23

∂ (pb − pa)
∂t

= gρ(η)
∂η

∂t
+ g

∫ η

−H

∂ρ

∂t
dz. (46)

where ρ(η) = ρ(z = η) is density at the ocean free surface. This equation represents a diagnostic24

balance between three tendencies, whereby changes in the mass of seawater in an ocean column25

(left hand side) are balanced by changes in the sea level and depth integrated changes in density26

(local steric effects). Following Gill and Niiler (1973), we rearrange to yield a diagnostic expression27

for the sea level tendency28

∂η

∂t
=

(
1

gρ(η)

)
∂ (pb − pa)

∂t︸                  ︷︷                  ︸
mass tendency

−
1
ρ(η)

∫ η

−H

∂ρ

∂t
dz︸             ︷︷             ︸

local steric tendency

. (47)

This decomposition connects changes in ocean volume to changes in ocean mass and changes in29

ocean density. It provides the basis for various diagnostic analyses of regional sea level changes30

5 Dynamic sea level refers to the sea level normalized to have zero area mean. This component of sea level responds
directly to dynamical processes in the ocean.
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in models and observations, with examples given by Lowe and Gregory (2006), Landerer et al.1

(2007b), Landerer et al. (2007a), Yin et al. (2009), Yin et al. (2010a), Pardaens et al. (2011), Griffies2

et al. (2014), and Landerer et al. (2015). One key reason this decomposition is so useful is that each3

term, in principle, can be independently measured using methods of observational oceanography,4

and tested by comparing to global model simulations. Namely, the sea level tendency is measured5

by satellite altimetry (e.g., this book); the mass tendency is measured by the gravity field (e.g.,6

GRACE); and the density (or local steric) term is measured by in situ temperature and salinity (e.g.,7

Argo). We discuss facets of this balance in the following.8

2.2.1 Sea level tendencies due to mass changes9

The hydrostatic balance (45) indicates that the pressure difference pb − pa changes when mass10

per area within a seawater column changes. Furthermore, the column mass budget is given by11

equation (27), which allows us to write the equivalent expressions for sea level change arising from12

mass changes13 (
∂η

∂t

)mass changes

=

(
1

gρ(η)

)
∂ (pb − pa)

∂t︸                  ︷︷                  ︸
mass tendency

=
−∇ ·Uρ + Qm

ρ(η)︸           ︷︷           ︸
mass convergence

. (48)

Mass converging to a column causes the column to increase its thickness and thus to raise the sea14

level. Signals of mass changes propagate through barotropic wave processes (Section 1.8.2), which15

rapidly transmit mass induced sea level changes around the World Ocean (e.g., see Lorbacher et al.16

(2012)).17

2.2.2 Sea level tendencies due to local steric changes18

The second term on the right hand side of equation (47) arises from local depth integrated density19

changes, which we refer to as the local steric effect20 (
∂η

∂t

)local steric

= −
1
ρ(η)

∫ η

−H

∂ρ

∂t
dz. (49)

This local steric effect is distinguished from the non-Boussinesq steric effect discussed in Section21

2.1.22

As density in the column decreases, such as when a fluid column warms or freshens, then the23

column expands and sea level rises. The local steric term in equation (49) thus arises from changes24

in temperature, salinity (and pressure).6 In many regions, such as the Atlantic, the ocean is both25

warming and getting saltier, so that the thermosteric (temperature induced) sea level rise is partially26

compensated by halosteric (salinity induced) sea level fall. We illustrate this point in Figure ??,27

taken from a climate model simulation of climate change. Finally, we note that changes in steric28

sea level propagate throughout the World Ocean on a baroclinic time scale, so are far slower than29

the barotropic signals that transmit mass changes (Bryan (1996), Hsieh and Bryan (1996), Stammer30

(2008), and Lorbacher et al. (2012)).31

6Pressure-induced changes are generally subdominant, so that the local steric effect is predominantly determined by
changes in temperature and salinity.
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along the northeastern U.S. coast is almost double the
global mean during the twentieth century and suggest
a local component of about 2 mm yr21 that cannot be
completely explained by isostatic adjustment (Cooper
et al. 2008; Llovel et al. 2009; Wöppelmann et al. 2009).
The rapid dynamic SLR is induced by the weakening

of the AMOC (Figs. 6d and 6e). Over the twenty-first
century, the steric SLR south of Greenland and east of
North America is much larger than the global mean
(Fig. 9a). The local steric SLR is dominated by the
halosteric effect north of 508N, due to an ocean freshening
but cooling, and by the thermosteric effect south of 508N,

due to an ocean warming but salinification (Fig. 10). The
latter results from heat accumulation along the Gulf
Stream and the North Atlantic Current in the upper
ocean and a deep ocean warming, especially along the
deep western boundary current. Both result from the
weakening of the AMOC. The local steric SLR causes
two sharp gradients: across the Gulf Stream and North
Atlantic Current and across the shelf break (Fig. 9a).
While the former is balanced by the slowingGulf Stream
and North Atlantic Current, the latter cannot be bal-
anced by any geostrophic currents, thereby leading to
an increase in the mass loading on the shelf near the

FIG. 10. Local (a) thermosteric and (b) halosteric SLRs (m) in the A1B scenario run of CM2.1.
The values are calculated according to Eqs. (6) and (7) with the global mean subtracted.
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Figure 1: Thermosteric and halosteric contributions to sea level changes as realised in a climate
change simulation using the GFDL-CM2.1 coupled climate model. Shown are differences from
the control simulations averaged over years 2091-2100, relative to a control simulation at year
1981-2000. These figures are taken from Yin et al. (2010a).

2.2.3 Inverse barometer sea level tendencies1

Consider changes to the pressure applied to the sea surface, yet keep the ocean bottom pressure2

and ocean density unchanged. We can realize this situation so long as the sea level adjusts to3

provide exact compensation for changes in the applied pressure. Making use of equation (47)4

renders5 (
∂η

∂t

)inverse barometer

= −

(
1

gρ(η)

)
∂ pa

∂t
. (50)

As reviewed in Appendix C of Griffies and Greatbatch (2012), such inverse barometer responses of6

sea level are commonly realized under sea ice and under atmospheric pressure loading. Although7

sea level changes, the “effective sea level”8

η′ = η +

(
pa

gρ

)
(51)

remains close to constant, where we introduced the area mean surface density, ρ. For example,9

the sea level is depressed if the applied pressure increases. If the depressed sea level maintains an10

inverse barometer response, then the effective sea level remains unchanged.11

2.2.4 Sea level tendencies, dynamic topography, and the rigid lid12

Following Appendix B.4 of Griffies et al. (2014), consider the thickness of fluid extending from the13

ocean surface to a chosen pressure level in the ocean interior, as given by14

D(P) = η − z(P). (52)

We may relate this expression to the integral of the specific volume, ρ−1, between two pressure15

surfaces16

D(P) =

η∫
z(P)

dz =

P∫
pa

dp
gρ
, (53)
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where the second step used the hydrostatic balance to relate changes in pressure to changes in1

thickness, dp = −gρdz. We refer to the thickness D(P) as the dynamic topography with respect to2

a reference pressure P. Evolution of the dynamic topography arises from changes in the applied3

pressure, and changes in the specific volume4

g
∂D(P)
∂t

= −
1
ρ(η)

∂pa

∂t
+

P∫
pa

∂ρ−1

∂t
dp, (54)

where the time derivative acting on the specific volume is taken on surfaces of constant pressure.5

By the definition (52), if the depth z(P) of the constant pressure surface is static, then the layer6

thickness D(P) evolution matches that of the sea level η. However, there is generally no such7

static pressure level, thus making the time tendencies differ. Nonetheless, for lack of sufficient8

information about deep ocean currents, it is sometimes convenient in dynamical oceanography9

to assume a pressure at which baroclinic currents vanish (e.g., Pond and Pickard (1983), Tomczak10

and Godfrey (1994)). This level of no motion occurs if the barotropic pressure head associated with11

a sea level undulation is exactly compensated by density structure within the ocean interior (see12

Figure 2). Currents are static below the level of no motion and so are dynamically disconnected13

from sea level changes. Evolution of the column thickness between the surface and the level of no14

motion thus provides a proxy for the evolution of sea level.15

surface: p = pa

p = p1

p = p2

p = p3

p = p4

ρ = ρpycnocline

light water

heavy water

z
x, y

Figure 2: A vertical slice through a 1.5 layer ocean in hydrostatic balance, taken after Figure 3.3
from Tomczak and Godfrey (1994). Shown here is a plug of light water, as may occur in a warm
core eddy, sitting on top of heavy water, where motion is assumed to vanish in the heavy water.
The sea surface experiences an applied pressure p = pa, assumed to be uniform for this idealized
situation. Isolines of hydrostatic pressure are shown, with a slight upward bow to the isobars
within the light water region, and flat isobars beneath, in the region of zero motion. Note how sea
level is a maximum above the pycnocline minimum, which occurs due to baroclinic compensation.
The slope of the pycnocline is about 100-300 times larger than the sea level (Rule 1a of Tomczak
and Godfrey, 1994). See Appendix B of Griffies et al. (2014) for more details.

Analyses based on assuming a level of no motion are common in simulations with a rigid16

lid ocean model, as in the studies of Delworth et al. (1993), Bryan (1996), Griffies and Bryan17

15



(1997). As there is no tendency equation for the free surface in rigid lid models, only indirect1

methods are available for obtaining information about sea level time changes (Gregory et al.,2

2001). Furthermore, given the records of observed hydrography, one may find it convenient to3

consider dynamic topography as a proxy for dynamic sea level (e.g., Levitus, 1990).4

3 Sea level gradients and ocean circulation5

From the hydrostatic balance (3b), we can write the pressure at an arbitrary point z in the form6

p(z) = pa + g
∫ η

z
ρdz′, (55)

which then leads to the horizontal pressure gradient7

∇zp(z) = ∇pa + gρ(η)∇η + g
∫ η

z
∇zρdz′ (56a)

≈ gρ∇η′ + g
∫ η

z
∇zρdz′, (56b)

where we introduced the effective sea level (equation (51)) discussed in relation to the inverse8

barometer.9

3.1 Surface ocean10

A particularly simple relation between sea level and ocean currents occurs when the surface ocean11

flow is in geostrophic balance, in which12

g∇η′ = − f ẑ ∧ u, (57)

where u is the surface horizontal velocity. This equation forms the basis for how surface ocean13

currents are diagnosed from sea level measurements (Wunsch and Stammer, 1998). A slight14

generalization is found by including the turbulent momentum flux τs through the ocean surface15

boundary, in which case the sea level gradient takes the form16

g∇η′ = − f ẑ ∧ u +
τs

ρo hE
, (58)

where hE is the Ekman depth over which the boundary stresses penetrate the upper ocean. As17

noted by Lowe and Gregory (2006), surface currents in balance with surface wind stresses tend18

to flow parallel to the sea level gradient, whereas geostrophically balanced surface currents are19

aligned with surfaces of constant sea level.20

3.2 Full ocean column21

Vertically integrating the linearized form of the horizontal momentum budget (3a) in the absence22

of horizontal friction leads to the relation23

(gρo H)∇η′ = τs + Qm um − τb
− (∂t + f ẑ∧ ) Uρ

− B. (59)
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In this equation, τs and τb are the turbulent boundary momentum fluxes at the surface and bottom;1

Qm um is the horizontal advective momentum flux associated with surface boundary fluxes of mass,2

with um the horizontal momentum per mass of material crossing the ocean surface.7 Finally,3

B = g

η∫
−H

dz

η∫
z

∇zρdz′ (60)

is a horizontal pressure gradient arising from horizontal density gradients throughout the ocean4

column. Lowe and Gregory (2006) employed the steady state version of the balance (59) while5

ignoring boundary terms (see their equation (7)),6

(gρo H)∇η′ ≈ − f ẑ ∧ Uρ
− B (61)

to help interpret the sea level patterns in their climate model simulations.7

3.3 Barotropic geostrophic balance8

As seen by equation (59), sea level gradients balance many terms, including surface fluxes, internal9

pressure gradients, and vertically integrated transport. Dropping all terms except Coriolis leads10

to a geostrophic balance for the vertically integrated flow, whereby equation (59) reduces to11

(gρo H)∇η′ = f ẑ ∧ Uρ, (62)

which is equivalent to12

Uρ = −

(
gρo H

f

)
ẑ ∧ ∇η′. (63)

With a constant depth and Coriolis parameter, the effective sea level is the streamfunction for the13

vertically integrated flow.14

Following Wunsch and Stammer (1998), we use equation (62) to see how much vertically15

integrated transport is associated with a sea level deviation. For example, the meridional transport16

between two longitudes x1 and x2 is given by17

x2∫
x1

dx Vρ =
gρo H

f
[η(x2) − η(x1)], (64)

where we assumed a flat ocean bottom. The horizontal distance drops out from the right hand18

side, so that the meridional geostrophic transport depends only on the sea level difference across19

the zonal section, and not on the length of the section. Assume the ocean depth is H = 4000 m20

and set f = 7.3 × 10−5 s−1 (30◦ latitude), which renders a transport of about 6 × 109 kg s−1, or six21

Sverdrups.22
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