Land Surface Processes and Land Modelling in Earth System Modeling ### Roshan Shrestha, Michael Ek Environmental Modeling Center (EMC) National Centers for Environmental Prediction (NCEP) NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University Research Court College Park, MD 20740 National Oceanic and Atmospheric Administration (NOAA) IITM 2016 • Pune, India • 16-26 July 2016 # NOAA Center for Weather and Climate Prediction (NCWCP), College Park, Maryland, USA #### www.noaa.gov NATIONAL OCEANIC AND WWI ATMOSPHERIC ADMINISTRATION #### NATIONAL WEATHER SERVICE #### **National Weather Service** National Centers **Environmental Prediction** within domestic and international air space. Climate Prediction Center monitors and forecasts short-term climate fluctuations and provides information on Environmental Modeling Center develops and improves numerical weather, climate, hydrological and ocean Hydrometeorological Prediction Center provides nationwide analysis and forecast guidance products out NCEP Central Operations sustains and executes the operational suite of numerical analyses and forecast models and prepares NCEP products for dissemination National Hurricane Center provides forecasts of the movement and strength of tropical weather systems and issues watches and warnings for the U.S. and surrounding areas. Ocean Prediction Center issues weather warnings and forecasts out to five days for the Atlantic and Pacific Space Weather Prediction Center provides space weather alerts and warnings for disturbances that can affect stand with the standard of #### **Environmental Modeling Center** #### Development, upgrade, transition, maintain models NOAH LAND-SURFACE ARI / HYSPLIT # Outline - Role of Land Surface Models (LSMs) - Review of Land Surface Processes - Land requirements: physics & parameters, atmospheric forcing, land data sets, initial land states, and land data assimilation - Land Applications for Weather & Climate - Testing and Validation - Land Models in a fully-coupled Earth System - Land-Atmosphere Interactions - Partners - Summary Why land modeling is needed? # ESM for weather and climate ### Weather Climate # Global circulations and evaporation 0-30 poleward movement in upper atm rising air in equator, descend at 30 30-60 poleward moement in lower atm descending air along 30, rising at 60 60-90 poleward movement in upper atm ascending air at 60 descending at 90 Surface pressure, winds and rainfall are strongly related Global pattern of E is controlled by radiation balance at the surface (energy-limited), surface winds over ocean and ocean currents # Global pattern of precipitation - Tropical convection clusters at 60W (Amazon), 30E (Africa), and 120E (Indonesia). - 2. Mid-latitude storm tracks form on the eastern margins of continents. - 3. Deserts form in the subtropics on the western sides of continents. - 4. Mid-latitude rain forests form where oceanic westerlies hit the coast. Land determines the location of precipitation ### **Monsoons** - Over land, monsoons characterized by rainy/dry seasons - Summer wet / winter dry monsoons exist primarily in the subtropical regions, but can extend into mid-latitudes. - Winter monsoons (a.k.a. Mediterranean climates) exist in the Northern Hemisphere (California, North Africa, Middle East) # Impact of High Terrain - Himalayas affect the entire depth of the troposphere - Temperatures at 500mb (about halfway up through the atmosphere) are considerably warmer because of the presence of the mountain range. - This "elevated heat source" is the main engine driving the Asian monsoon. - Impacts are even seen in the opposite hemisphere. Fig. 4.4. Horizontal distribution of July mean 500 mb temperatures (K) of the M-model (top) and the NM-model (bottom). R. Shrestha, IITM 2016 Hahn & Manabe (1975) # Precipitation and Soil Moisture - Lack of precipitation leads to dry soil (drought). - Does dry soil lead to lack of precipitation? - Feedback between land and atmosphere. # U.S. Drought Monitor August 20, 2002 # Tropical land and teleconnections Heating of the atmosphere over the tropical convective areas can induce "wavetrains" that arc into the mid-latitudes. These wavetrains may provide a teleconnective link between changes to the land surface in the tropics, and climate in the mid-latitudes Fig. 5. The tragically farced 300 mlt geogratential (af Fig. 8) is split up into parts farced by the 'Indonesian' sector (shown in the left hand panel) and the Amazonian sector (for definition, see the text); the fields are shown in the Northern Hemisphere using a contour interval of 10 gram which is half of that used in contouring the geogratential in Fig. 8. ### Ocean versus Land Ocean has a much higher heat capacity than land. 1. • F C O p - Water "flows" while the land surface is fixed. Ocean can transport much heat laterally, land cannot. • M - D 3. Ocean, obviously, is wet (evaporation is not limited by lack of moisture). Land can be wet, dry, or somewhere in between (moisture limitations can impede • E evaporation). - The upper layer of the ocean is well mixed, so the surface characteristics are 4. sufficient to define its interaction with the atmosphere, but soil has vertical structure and overlying vegetation. Heat conduction and moisture transport below the surface become important. ra - These facts have a bearing on the physical interactions between the surface and the atmosphere and on the manner in which drag coefficients are specified. # Simple Land-Climate Interaction ### The fluxes Basic notions of the land's effects on global circulation and climate (mean, diurnal cycle, seasonal cycle) - Momentum - Orographic drag, surface roughness, turbulence - Radiation - Solar radiation absorbed, reflected (albedo); longwave radiation - Heat - Sensible heat (conduction), Latent heat (evaporation), Heat storage - Moisture - Precipitation, evaporation, transpiration - Aerosols - Trace Gases These fluxes are the means of communication between land and atmosphere # **Energy Balance Over Land** # Vegetation distribution Much of the variety at the land surface is in the vegetation. The distributions of major types are determined by: climate, soils, and human activity. # So, how simple is this land? Understanding the role of land in the global circulation and the impact of landclimate interaction in the weather and climate is certainly not simple. - We cannot do controlled sensitivity studies with the "real world" - To understand it better, we construct and use land surface models - To account how terrestrial water and energy fluxes are being partitioned - The LSMs are imperfect - Assumptions, Simplifications, Parameterizations, Errors - And, the climate system is non-linear - Utterly sensitive to initial conditions - Instabilities exist that make prediction difficult - However, coupling of land surface models are helpful - To provide proper boundary conditions for global models #### Role of Land Models - Traditionally, from a coupled (atmosphere-oceanland-ice) Numerical Weather Prediction (NWP) and climate modeling perspective, a land-surface model provides quantities as boundary conditions: - Surface sensible heat flux, - Surface latent heat flux (evapotranspiration) - Upward longwave radiation (or skin temperature and surface emissivity), - Upward (reflected) shortwave radiation (or surface albedo, including snow effects), - Surface momentum exchange. ### Atmospheric & Surface Energy Budget Close the surface energy budget, and provide surface boundary conditions to NWP and climate models. ### Water Budget (Hydrological Cycle) Close the surface water budget, and provide surface boundary conditions to models. #### Weather & Climate: a "Seamless Suite" • Products and model are integrated a consistent throughout time & space, as well as across forecast application & domain. Land modeling example: Static vegetation, e.g. climatology vegetation, or realtime observations R. Shrestha, IITM @fowth **Dynamic** e.g. plant **Dynamic** ecosystems, e.g. changing land cover ### **Predictability and Prediction** Land states (namely soil moisture*) can provide predictability in the window between deterministic (weather) and climate (O-A) time scales. - To have an effect, it must have: - 1. Memory of initial land - Memory of initial land states. Sensitivity of fluxes to land states, atmosphere today 2. Sensitivity of fluxes to fluxes. - 3. Sufficient variability Paul Dirmeyer, George Mason Univ. Atmosphere (Weather) Land Ocean Climate ~10 days ~2 months Time ^{*}Snow, too! #### Land Modeling History (NCEP/NWP prespective) - 1960s (6-Layer PE model): land surface ignored, aside from terrain height and surface friction effects. - 1970s (LFM): land surface ignored. - Late 1980s (NGM): first land surface model (LSM) introduced: - Single layer soil slab (Deardorff "force-restore" soil model). - No explicit vegetation treatment. - Temporally fixed surface wetness factor. - Diurnal cycle treated (and diurnal ABL) with diurnal surface radiation. - Surface albedo, surface skin temperature, surface energy balance. - Snow cover (but not depth). - Early1990s (Global MRF): OSU LSM: - Multi-layer soil column (2-layers). - Explicit annual cycle of vegetation effects. - Snow pack physics (snowdepth, SWE). - Mid 1990s (Meso Eta model): Noah LSM replaces force-restore. - Mid 2000s (Global Model: GFS): Noah LSM replaces OSU LSM. - Mid 2000s (Meso Model: WRF): Unified Noah LSM with NCAR. - 2010s: Noah-MP with NCAR & Noah model development group. #### Land Models for Weather and Climate #### Weather versus Climate (change) considerations: - Vegetation (Static vs dynamic: growth), vs dynamic ecosystems (plant succession), and biogeochemical cycles with CO2-based photo-synthesis, different crops, C3, C4, CAM vegetation. - Longer time-scales spin-up for deeper soils and groundwater, regions with "slow" hydrological cycle (arid, cold), carbon stores. - Land-use change (observed/assimilated vs modelled), e.g.
harvest, fires, urban areas. - Human influences, e.g. irrigation/reservoirs, urban. - Careful bookkeeping of energy, water, other budgets, e.g. heat content transported by rivers for climate. - Seamless connection between weather and climate. #### Land Models for Weather and Climate • Land surface processes ### Land Model Requirements - To provide proper boundary conditions, land model must have: - Appropriate **physics** to represent land-surface processes (for relevant time/spatial scales) and associated LSM model parameters. - Required **atmospheric forcing** to drive LSM. - Corresponding land data sets, e.g. land use/land cover (vegetation type), soil type, surface albedo, snow cover, surface roughness, etc. - Proper **initial land states**, analogous to initial atmospheric conditions, though land states may carry more "memory" (e.g. especially in deep soil moisture), similar to ocean SSTs. #### Two critical roles for a land surface model: - → Partition incoming radiative energy into latent heat, sensible heat, heat storage, and outgoing radiative energy - → Partition precipitation into evaporation, runoff, and water storage. ### Energy Balance at the Land Surface #### where S_{w}^{\downarrow} = Incoming shortwave radiation $L_{w}^{"}$ = Downward longwave radiation S_{w}^{\uparrow} = Reflected shortwave radiation L_{w}^{\uparrow} = Upward longwave radiation H = Sensible heat flux λ = latent heat of vaporization E = Evaporation rate C_n = Heat capacity of surface slab ΔT = Change in slab's temperature, over the time step miscellaneous = energy associated with soil water freezing, plant chemical energy, heat content of precipitation, etc. #### Energy balances considering additional layers #### Energy balance of a vegetation canopy #### Energy balance in a surface layer G_{12} = heat flux between soil layers 1 and 2 #### Energy balance in a subsurface layer #### Energy balance in snowpack $\lambda_{\rm m}$ = latent heat of melting λ_s = latent heat of sublimation M = snowmelt rate G_{S1} = heat flux between bottom of pack and soil layer 1 # **Combinations** Fluxes are usually kept consistent between the "control volumes". If the energy balance calculation for the snowpack includes a flux G_{S1} from the bottom of the pack to the ground, then the energy balance for the top soil layer must include an input flux of G_{S1} . In this example, a total of five energy balances are included: canopy, snowpack, and three soil layers. Note that LSMs may include additional soil layers or may divide the snowpack itself into more layers, each with its own energy balance. ### Radiation $$S_{w}^{\downarrow} = \sum_{b=1}^{N} S_{w,direct,band:b}^{\downarrow} + \sum_{b=1}^{N} S_{w,diffuse,band:b}^{\downarrow}$$ $$reflectance for spectral band$$ $$S_{w}^{\uparrow} = \sum_{b=1}^{N} S_{w,direct,band:b}^{\downarrow} * \alpha_{direct,band:b}$$ $$+ \sum_{b=1}^{N} S_{w,diffuse,band:b}^{\downarrow} * \alpha_{diffuse,band:b}$$ Simplest description: without differentiating between diffuse and direct components: Stefan-Boltzmann law: $$L_w^{\uparrow} = \epsilon \sigma T^4$$ where ϵ = surface emissivity σ = Stefan-Boltzmann constant = 5.67 x 10⁻⁸ W/(m²K⁴) T = surface temperature (K) Emissivities of natural surfaces tend to be slightly less than 1, and they vary with water content. For simplicity, many models assume $\epsilon = 1$ exactly. ### **Heat Fluxes** #### Sensible heat flux (H) Spatial transfer of the "jiggly-ness" of molecules, as represented by temperature Equation commonly used in climate models: $$H = \rho c_p C_H |V| (T_s - T_r),$$ where ρ = mean air density c_p = specific heat of air, constant pressure C_H = exchange coefficient for heat |V| = wind speed at reference level T_s = surface temperature T_r = air temperature at reference level (e.g., lowest GCM grid box) For convenience, we can write this in terms of the aerodynamic resistance, r_a : $$H = \frac{\rho c_p (T_s - T_r)}{r_a}$$ where $r_a = 1/(C_H |V|)$ #### **Latent Heat Flux (LE):** The energy used to transform liquid (or solid) water into water vapor Latent heat flux from a liquid surface: $\lambda_v E$ where E = evaporation rate (flux of water molecules away from surface) λ_v = latent heat of vaporization = (2.501 - .002361T) x 10⁶ J/kg (approx) Latent heat flux from an ice surface: $\lambda_s E$ where λ_s = latent heat of sublimation = $\lambda_v + \lambda_m$ λ_m = latent heat of melting = 3.34 x 10⁵ J/kg (approx) For simplicity, λ_v and λ_s shall be assumed constant. Thus the latent heat flux estimation shall be discussed in terms of the evaporation calculation. r_a: the aerodynamic resistance represents the difficulty with which heat (jiggliness of molecules) can be transferred through the near surface air. This difference is strongly dependent on wind speed, roughness length, and buoyancy, which itself varies with temperature difference: $e_s(T)$ = saturation vapor pressure: the vapor pressure at which the condensation vapor onto a surface is equal to the upward flux of vapor from the surface. $$e_s(T)$$ varies as $exp(-0.622 \frac{\lambda}{R_d T})$ $e_s(T) = exp(21.18123 - 5418/T)/0.622$ Mass of vapor per mass of air Specific humidity, q: $$q_r = 0.622 e_r/p$$ (p = surface pressure, e, = vapor pressure) #### Four evaporation components Transpiration: The flux of moisture drawn out of the soil and then released into the atmosphere by plants. Bare soil evaporation: Evaporation of soil moisture without help from plants. Interception loss: Evaporation of rainwater that sits on leaves and ground litter without ever entering the soil Snow evaporation: sublimation from the surface of the snowpack R. Shrestha, IITM 2016 #### Evaporation from a fully wetted surface $(=E_p)$ Here's the famous Penman equation: The Penman equation can be shown to be equivalent to the following equation, which lies at the heart of the potential evaporation calculation used in many climate models: $$E_p = \frac{0.622\rho}{p} \frac{e_s(T_s) - e_r}{r_a}$$ #### A simple rationale: The air is full of eddies. Buoyancy tends to make warm pockets of air rise and cool ones sink. #### Land surface Rising warm pockets bring both warm air and moist air up with them **Descending cool** In other words, the same process contributes to both sensible heat flux and evaporation flux. Thus, the same "resistance" applies. #### Simplest model for transpiration: Equation that lies at the heart of standard land surface models! $$E = \frac{0.622\rho}{p} \frac{e_s(T_s) - e_r}{r_{a+}r_s}$$ - -- Assumes saturated conditions within plant stomata - Assumes the plant/soil system determines r_s, the stomatal resistance. - -- Employs "Ohm's Law" analogy, placing stomatal and aerodynamic resistances in series. ______ Note: above equation is equivalent to the famous Penman-Monteith evaporation equation $$E_{\text{penman-monteith}} = \frac{(R_{\text{net}} - G) \Delta + (\rho c_p/r_a) (e_s(T_r) - e_r)}{\Delta + \gamma (1 + r_s/r_a)}$$ #### Stomatal resistance is not easy to quantify. #### r_s varies with: - -- plant type and age - -- photosynthetically active radiation (PAR) - -- soil moisture (w) - -- ambient temperature (T_a) - -- vapor pressure deficit (VPD) - -- ambient carbon dioxide concentrations | Effective r_s for a full cano leaf distribution, etc. r_s | | | Optimal temperature range (K) | Wilting point matric potential (m) | |---|--|------|-------------------------------|------------------------------------| | | Minimum Stomatal Resistance [sec m-1}] | | From SiB, as | From SiB, as | | | (from BATS and CLSM, via LDAS) | | used in Mosaic | used in Mosaic | | | 1. Evergreen Needleleaf Forest | 175 | 268-313 | -250. | | Modeling stomata | 2. Evergreen Broadleaf Forest | 150 | 273-318 | -500 | | C | 3. Deciduous Needleleaf Forest | 175 | | | | "Jarvis-type" models | 4. Deciduous Broadleaf Forest | 175 | 273-318 | -250. | | Many newer models | 5. Mixed Cover | 175 | | | | | 6. Woodland | 173. | | | | | 7. Wooded Grassland | 169. | | | | Key point: Because plant | 8. Closed Shrubland | 175 | 283-323 | -400 | | • | 9. Open Shrubland | 178. | | | | environmental stress, r _s i | iv. Gradolana | 165 | 283-328 | -230. | | times of environmental s | 11. Cropland | 117 | | | | | 12. Bare Ground | 175 | | | | | 13. Urban and Built Up ₂₀₁₆ | 154. | | 38 | #### Typical approaches to modeling latent heat flux (summary) #### Transpiration $$\lambda_{v}E = \frac{0.622\lambda_{v}\rho}{p} \frac{e_{s}(T_{s}) - e_{r}}{r_{a+}r_{s}}$$ #### Evaporation from bare soil $$\lambda_{v}E = \frac{0.622\lambda_{v}\rho}{p} \frac{e_{s}(T_{s}) - e_{r}}{r_{a+}r_{surface}}$$ Resistance to Interception loss $$\lambda_{v}E = \frac{0.622\lambda_{v}\rho}{p} \frac{e_{s}(T_{s}) - e_{r}}{r_{a}}$$ Snow evaporation Note: more complicated forms are possible, e.g., inclusion (in series) of a subcanopy aerodynamic resistance. evaporation imposed by soil $$\lambda_s E = \frac{0.622 \lambda_s \rho}{p} \frac{e_s(T_s) - e_s}{r_a}$$ #### **HEAT FLUX INTO THE SOIL** One layer soil model: Let G be the residual energy flux at the land surface, i.e., $$G = S_w + L_w + S_w + L_w + \lambda E$$ Then the temperature of the soil, T_s , must change by ΔT_s so that $$G = C_p \Delta T_s / \delta t$$ where C_p is the heat capacity δt is the time step length (s) The choice of the heat capacity can have a major impact on the surface energy balance. - -- Heat capacity might, for example, be chosen so that it represents the depth to which the diurnal temperature wave is felt in the soil. - -- Note that heat capacity increases with water content. Incorporating this effect correctly can complicate energy balance calculations. #### **Heat Flux Between Soil Layers** One simple approach: $$G_{12} = \Lambda (T_1 - T_2) /
\Delta z$$ #### where Λ = thermal conductivity Δz = distance between centers of soil layers. - -- Using multiple layers rather than a single layer allows the temperature of the surface layer (which controls fluxes) to be more accurate. - -- Like heat capacity, thermal conductivity increases with water content. Accounting for this is comparatively easy. #### **Snow modeling** #### Snow profile Temperature Critical property of snow: Low thermal conductivity To capture such properties, the snow can be modeled as a series of layers, each with its own temperature. #### One way: - 1. Solve the energy balance for a layer, and determine the updated temperature. - 2. If the new temperature is less than or equal to 273.16°K, then we're done. - 3. If the new temperature is greater than 273.16°K, then recompute the energy balance assuming the new temperature is exactly 273.16°K. #### **SOLVING THE ENERGY BALANCE EQUATION** The key to solving the energy balance equation is to notice that all fluxes on the right hand side of the equation (except S_w) are functions of the temperature, T_s . Simplest calculation: Assume heat capacity of surface is zero. $$S_w^{\downarrow} + L_w^{\downarrow} = S_w + f(T_s)$$ Solve for T_s #### Water Balance at the Land Surface $$W_{in}\Delta t = \Delta storage + W_{out}\Delta t$$ Water Balance for a Single Land Surface Slab, Without Snow (e.g., standard bucket model) Terms on RHS come are determined by the land surface model. $$P = E + R + C_w \Delta w / \Delta t + miscellaneous$$ #### where P = Precipitation E = Evaporation R = Runoff (effectively consisting of surface runoff *and* baseflow) C_w = Water holding capacity of surface slab Δw = Change in the degree of saturation of the surface slab Δt = time step length miscellaneous = conversion to plant sugars, human consumption, etc. ### Simplified water balance # Water balance associated with canopy interception reservoir #### A combination of water balances: $$P = E_{int} + D_c + \frac{\Delta W_c}{\Delta t}$$ E_{int} = interception loss D_c = drainage through canopy ("throughfall") ΔW_c = change in canopy interception storage #### Water balance in a snowpack $$P = E_{snow} + M + \frac{\Delta W_{snow}}{\Delta t}$$ E_{snow} = sublimation rate M = snowmelt ΔW_{snow} = change in snow amount ("infinite" capacity possible) Water balance in a surface layer $$M + D_c = E_{bs} + E_{tr1} + R_s + Q_{12} + C_{W1} \Delta W_1 / \Delta t$$ E_{bs} = evaporation from bare soil E_{tr1} = evapotranspiration from layer 1 Q_{12} = water transport from layer 1 to layer 2 C_{W1} = water holding capacity of layer 1 ΔW_1 = change in degree of saturation of layer 1 Water balance in a subsurface layer (e.g., 2nd layer down) $$Q_{12} = Q_{23} + E_{tr2} + C_{W2} \Delta W_2 / \Delta t$$ E_{tr2} = evapotranspiration from layer 2 Q₂₃ = water transport from layer 2 to layer 3 C_{W2} = water holding capacity of layer 2 ΔW_2 = change in degree of saturation of layer 2 Water balance in the lowest layer $$Q_{n,n-1} = Q_D + E_{tr-n} + C_{Wn} \Delta W_n / \Delta t$$ E_{tr-n} = evapotranspiration from layer n, if allowed Q_D = Drainage out of the soil column (baseflow) A model may compute all of these water balances, taking care to ensure consistency between connecting fluxes (in analogy with the energy balance calculation). #### Precipitation, P Getting the land surface hydrology right in a climate model is difficult largely because of the precipitation term. At least three aspects of precipitation must be handled accurately: - a. Spatially-averaged precipitation amounts (along with annual means and seasonal totals) - b. Subgrid distribution. - c. Temporal variability and temporal correlations. Otherwise, even with a perfect land surface model, #### **Evaporation** Evaporation is important in water balance as it was in energy balance. Note, though, locations of moisture sinks for bare soil evaporation and transpiration: Bare soil evaporation water is usually taken from the top soil layer. Transpiration water is usually taken from the soil layers that comprise the root zone. Different amounts may be taken from different layers depending on: ### Runoff - a. Overland flow: - (i) flow generated over permanently saturated zones near a river channel system: "Dunne" runoff - (ii) flow generated because precipitation rate exceeds the infiltration capacity of the soil (a function of soil permeability, soil water content, etc.): "Hortonian" runoff - b. Interflow (rapid lateral subsurface flow through macropores and seepage zones in the soil - c. Baseflow (return flow to stream system from groundwater) Runoff (streamflow) is affected by such things as: - -- Spatial and temporal distributions of precipitation - -- Evaporation sinks - -- Infiltration characteristics of the soil - -- Watershed topography - -- Presence of lakes and reservoirs #### Energy balance versus water balance #### Energy balance: Implicit solution usually necessary Results in updated temperature prognostics #### Water balance: Implicit solution usually not necessary Results in updated water storage prognostics #### How are the energy and water budgets connected? - 1. Evaporation appears in both. - 2. Albedo varies with soil moisture content. - 3. Thermal conductivity varies with soil moisture content. - 4. Thermal emissivity varies with soil moisture content. Question: Can we address how the energy and water budgets *together* control evaporation rates? #### Budyko's analysis of energy and water controls over evaporation Let P = annual precipitation (mm/day) R/λ = annual net radiation (scaled to units of mm/day) E = annual evaporation (mm/day) Budyko (1974) first assumed that: 1. E can be no greater than P and R / λ (in the absence of year-to-year storage changes). 2. For $$\frac{R}{\lambda} \gg P$$, $E \longrightarrow P$ 3. For $\frac{R}{\lambda} \ll P$, $E \longrightarrow \frac{R}{\lambda}$ These assymptotes act as barriers to evaporation. #### Unified NCEP-NCAR Noah Land Model - Four soil layers (shallower near-surface). - Numerically efficient surface energy budget. - Jarvis-Stewart "big-leaf" canopy conductance with associated veg parameters. - Canopy interception. - Direct soil evaporation. - Soil hydraulics and soil parameters. - Vegetation-reduced soil thermal conductivity. - Patchy/fractional snow cover effect on sfc fluxes. - Snowpack density and snow water equivalent. - Freeze/thaw soil physics. - Noah for NWP & seasonal prediction. - Coupled with NCEP short-range NAM, medium-range GFS, seasonal CFS, HWRF, uncoupled NLDAS and GLDAS, etc. # Land Physics: Basic Prognostic Equations Soil Moisture ($$\Theta$$): $$\frac{\partial \Theta}{\partial t} = \frac{\partial K_{\Theta}}{\partial z} + \frac{\partial}{\partial z} \left(D_{\Theta} \frac{\partial \Theta}{\partial z} \right) + F_{\Theta}$$ •"Richard's Equation"; **DO** (soil water diffusivity) and **KO** (hydraulic conductivity), are nonlinear functions of soil moisture and soil type (Cosby et al 1984); FO is a source/sink term for precipitation/evapotranspiration. # Soil Temperature (T): $C_T \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(K_T \frac{\partial T}{\partial z} \right)$ $$\mathbf{C_T} \frac{\partial \mathbf{T}}{\partial \mathbf{t}} = \frac{\partial}{\partial \mathbf{z}} \left(\mathbf{K_T} \frac{\partial \mathbf{T}}{\partial \mathbf{z}} \right)$$ •CT (thermal heat capacity) and KT (soil thermal conductivity; Johansen 1975), non-linear functions of soil/type; soil ice = fct(soil type/temp./moisture). # Canopy water (Cw): $\frac{\partial C_w}{\partial t} = P - E_c$ $$\frac{\partial \mathbf{C_w}}{\partial \mathbf{t}} = \mathbf{P} - \mathbf{E_c}$$ •P (precipitation) increases Cw, while Ec (canopy water evaporation) decreases Cw. # Land Physics: Flux Boundary Conditions •Surface fluxes balanced by net radiation (Rn), = sum of incoming and outgoing solar and terrestrial radiation, with vegetation important for energy partition between H, LE, G, $$\mathbf{G} = \left(\frac{\mathbf{K_T}}{\Delta \mathbf{z}}\right) \left(\mathbf{T_{sfc}} - \mathbf{T_{soil}}\right)$$ $\mathbf{R_n} = \mathbf{H} + \mathbf{L}\mathbf{E} + \mathbf{G}$ i.e. surface roughness & near-surface turbulence (H), plant & soil processes (LE), and heat transport thru soil/canopy (G), affecting evolving boundary-layer, clouds/convection, and precipitation. 57 Land surface modeling # Land Physics: Tiled Land Grid - A land model grid may comprise sub-atmospheric-grid-scale "tiles", e.g. forest, shrubland, grass, crop, water, etc, O(1-4km). - Coarser-resolution atmospheric forcing to land. - Aggregate flux to "parent" atmospheric model. "blending" height Boundary-layer issues, e.g. when blending height is greater than ABL depth, cannot use aggregate flux. surface tiles with different fluxes # Land Physics: Model Parameters - Surface momentum roughness dependent on vegetation/land-use type and vegetation fraction. - Stomatal control dependent on vegetation type, direct effect on transpiration. - Depth of snow (snow water equivalent) for deep snow and assumption of maximum snow albedo is a function of vegetation type. - Heat transfer through vegetation and into the soil is a function of green vegetation fraction (coverage) and leaf area index (density). - Soil thermal and hydraulic processes highly dependent on soil type (vary by orders of magnitude). # Atmospheric Forcing to Land Model - Atmospheric forcing from parent atmospheric model (e.g. GFS), or analysis/reanalysis (e.g. CFSR) or Regional Climate Data Assimilation System (real time extension of the North American Regional Reanalysis, NARR), or from observations. - Precipitation is quite important for land models with observed precipitation input to the land model in the assimilation cycle, e.g. CPC gauge-based observed precip., temporally disaggregated with radar data (stage IV), satellite data (CMORPH),
bias-corrected with "PRISM". # Atmospheric Forcing: Precipitation - Global Land Data Assimilation System (GLDAS) used in NCEP Climate Forecast System (CFS) relies on "blended" precipitation product, function of: - **Satellite-estimated precipitation** (CMAP), heaviest weight in tropics where gauges sparse. - Surface gauge network, heaviest in mid-latitudes. - High-latitudes: Model-estimated precipitation based on Global Data Assimil. System (GDAS). Surface gauge **GDAS** (model) Jesse Meng NCEP/EMC, Pingping Xie, NCEP/CPC #### Land Data Sets Green Vegetation Fraction (monthly, 1/8-deg, NESDIS/AVHRR) **Snow-Free Albedo** (monthly, 1-km, Boston Univ.-MODIS) Fixed annual/monthly/weekly climatologies, or near real-time observations; some quantities may be assimilated into Noah, e.g. soil moisture, snow, greenness as initial land states. # Land Data Sets: Green Vegetation Fraction (GVF) and Wildfire Effects - Aerosols/Clouds PBL Albedo Latent Heat Sensible Heat Vegetation, Soils - Use of near realtime GVF leads to better partition between surface heating & evaporation --> impacts surface energy budget, ABL evolution, clouds/convection. - Wildfires affect weather and climate systems: (1) atmospheric circulations, (2) aerosols/clouds, (3) land surface states (GVF, albedo & surface temperature, etc.) → impact on sfc energy budget, etc. Consistency with "burned" & other products, e.g GVF. Weizhong Zheng and Yihua Wu, NCEP/EMC, Marco Vargas et al, NESDIS/STAR #### **Initial Land States** - Land state initial conditions are necessary for NWP & climate models, and must be consistent with land model used in a given weather or climate model, i.e. from same cycling land model. - Land states spun up in a given NWP or climate model cannot be used directly to initialize another model without rescaling because of differing land model soil moisture climatology. - In seasonal (and longer) climate simulations, land states are cycled, and some land data set quantities may be simulated (and therefore assimilated), e.g. green vegetation fraction & leaf area index, and even land-use type (evolving ecosystems). May Soil Moisture Climatology from 30-year NCEP Climate Forecast System Reanalysis (CFSR), spun up from Noah land model coupled with CFS. Jesse Meng NCEP/EMC # Initial Land States (cont.) • In addition to *soil moisture*: the land model provides *surface skin temperature*, *soil temperature*, *soil ice*, *canopy water*, and *snow depth* & *snow water equivalent*. National Ice Center snow cover Air Force Weather Agency snow cover & depth # Land data assimilation: Snow Depth **EnKF** NCEP/EMC land group testing use of NASA LIS EnKF to assimilate AFWA snow depth. Successful EnKF applications require accurate error estimates both from satellite observations and from the land model. Jiarui Dong, NCEP/EMC #### Land data assimilation: Soil Moisture Forecast hour 60-84, precipitation forecast 24h accum (mm) ending at 12Z 29 Apr 2012 - Noah land model multiple-year grid-wise means & std devs used to scale surface layer soil moisture retrievals before assimilation. - Testing assimilation of SMOPS in GFS; positive impact on precip. Weizhong Zheng, NCEP/EMC and Xiwu Zhan, NESDIS/STAR # Land Applications for Weather & Climate: NOAA's Operational Numerical Guidance Suite #### North American Land Data Assimilation System (NLDAS) - August 2014: North American LDAS (NLDAS) operational. - <u>NLDAS</u>: 4 land models run uncoupled, driven by CPC observed precipitation & NCEP NARR/R-CDAS atmospheric forcing. - Output: 1/8-deg. land & soil states, surface fluxes, runoff & streamflow; anomalies from 30-yr climatology for drought. - <u>Future</u>: higher res. (~3-4km), extend to full North American/global domains, improved land data sets/data assimil. (soil moisture, snow), physics upgrades including hydrology, initial land states for weather/climate models; global drought info. www.emc.ncep.noaa.gov/mmb/nldas NLDAS four-model ensemble soil moisture monthly anomalies Youlong Xia, NCEP/EMC ## **NLDAS Soil Moisture Monitoring** Ensemble mean total column soil moisture anomaly March 2012 – December 2013 #### Global Land Data Assimilation System (GLDAS) - Uses Noah land model running under NASA Land Information System forced with Climate Forecast System (CFS) atmos. data assimil. cycle output, & "blended" precipitation (gauge, satellite & model), "semi-coupled" –daily updated land states. - Snow cycled or assimilated (IMS snow cover, AFWA depth). - GLDAS land "re-runs", with updated forcing, physics, etc. - 30-year land climatology: energy/water budgets: Precipitation Evaporation Runoff Soil Moisture Snow Jan (top), July (bottom) Climatology from 30-year NCEP CFS Reanalysis (Precip, Evap, Runoff [mm/day]; Soil Moisture, Snow [mm]) Rongqian Yang, Jesse Meng NCEP/EMC # NASA Land Information System (LIS) Christa Peters-Lidard et al., NASA/GSFC/HSB, 3/90 Land model Testing and Validation # Land Model Testing and Validation Validation uses near-surface observations, e.g. routine weather observations of air temperature, dew point and relative humidity, 10meter wind, along with upper-air validation, precipitation scores, etc. To more fully validate land models, surface fluxes and soil states (soil moisture, etc) are also used. Monthly diurnal composites to assess systematic model biases (averaging out transient atmospheric conditions), and suggest land physics upgrades. # Compare monthly diurnal composites of model output versus observations from flux sites to assess systematic model biases. - to evaluate and benchmark the performance of different land models at various # Testing & Validation: NWP model NCEP North American Mesoscale model, 0-84hr forecast Assess systematic biases using diurnal monthly means. ## Testing & Validation: Model components Use surface fluxes (e.g. latent and sensible) to evaluate land-surface physics formulations and parameters, e.g. invert transpiration formulation to infer canopy conductance (below). #### Testing and Validation: Surface-layer Simulator - GOAL: Improve surface turbulence exchange coefficients. - Surface-layer simulation ("SLS") code simulates surface-layer and schemes from meso-NAM and medium-range GFS. - Use observations to drive SLS (U,T,q and Tsfc) and compare with inferred Ch, Cd from independent "fluxnet" obs (H, LE, τ). - Bias in surface exchange coefficient for heat dependent on vegetation height. Action: adjust thermal roughness parameter. #### Testing & Validation: Land Model Benchmarking - Benchmarking: Decide how good model needs to be, then run model and ask: Does model reach the level required? - Protocol for the Analysis of Land Surface models (PALS): www.pals.unsw.edu.au. GEWEX/GLASS project. - Compare models with empirical/statistical approaches, previous model versions, other land models. Different plots/tables of model validation and benchmarking metrics. - Identify systematic biases for model development/validation. Martin Best (UKMO), Gab Abramowitz (UNSW) et al. # Diurnal partition of Qh annual cycle Noah 3.3 has produced double peak, but the recession of first peak still has issues, particularly for the 'before noon' segment of the daytime fluxes. # Diurnal partition of Qg annual cycle Both Noah2.7 and Noah3.3 have serious issues except for summer season #### Testing & Validation: "uncoupled" NLDAS # Comprehensive evaluation against in situ observations and/or remotely sensed data sets. **Energy flux** validation from tower: net radiation, sensible, latent & ground heat fluxes. Water budget: evaporation, total runoff/streamflow. State variables: soil moist., soil/skin temp., snow depth/cover. Xia et al., JGR-atmosphere (2012) Monthly streamflow anomaly correlation (1979-2007 USGS measured streamflow) *Xia et al., J. Hydrol. (2014)* Daily top 1m soil moisture anomaly corr. (2002-2009 US SCAN Network) #### Testing & Validation: Column Model Testing #### Diurnal land-atmosphere coupling experiment (DICE) **Objective:** Assess impact of land-atmosphere feedbacks. Stage 1: stand alone land, and single column model (SCM) alone. Stage 2: Coupled land-SCM. Stage 3: Sensitivity of LSMs & SCMs to variations in forcing. **Data Set:** CASES-99 field experiment in Kansas, using 3 days: 23-26 Oct 1999, 19UTC-19UTC. **Joint GEWEX GLASS-GASS project** –outgrowth of GABLS2 (boundary-layer project) where *land-atmosphere coupling was identified as a important mechanism*. ~10 models participating. #### Testing & Validation: Land and related issues Low-level biases in winds, temperature, and humidity are influenced in part by the land surface via biases in surface fluxes exchanged with the atmospheric model (& effect on precipitation). Improving the proper partition of surface energy budget between sensible, latent, soil heat flux and outgoing longwave radiation, and effect on water budget, requires: - Improved vegetation physics/parameters to calculate ET. - Better soil physics/properties to address surface heterogeneity. - Improved snow physics (melt/freeze, densification). - •Surface-layer physics, especially nighttime/stable conditions, and interaction with the surface & atmospheric boundary layer. - •Remote sensing of many different initial land states, e.g. nearrealtime vegetation; corresponding data assimilation of these land states, e.g. snow, soil moisture, GVF. - •Improved forcing for the land model, especially precipitation and downward radiation; requires enhanced downscaling techniques. #### Testing & Validation: Simple-to-More Complex Hierarchy of Model Parameterization Development #### **Simulators** Radiation Clouds & convection *Microphysics* Boundary-Layer Surface-layer Land SURFACE Sea-ice Ocean, Waves Simulators: test submodel parameterizations at process level, e.g. radiation-only, land-only, etc. Testbed data sets to develop, drive & validate submodels: observations, models, idealized, with "benchmarks" before adopting changes.
Submodel interactions, with benchmarks. Full columns, with benchmarks. Limited-area/3-D (convection) with benchmarks. Regional & global NWP & seasonal climate, with benchmarks. More efficient model development, community engagement, R2O/O2R & computer usage. #### **Interaction** tests Column tests #### **Limited-area** #### Regional & Global R. Shrestha, IITM 2016 # Land Models in Earth Systems In a more fully-coupled **Earth System**, this role involves **Weather & Climate** connections to: - *Hydrology*: soil moisture & ground water/water tables, irrigation and groundwater extraction, water quality, streamflow and river discharge to oceans, drought/flood, lakes, and reservoirs/human mgmt. - **Biogeochemical cycles**: application to ecosystems, both terrestrial & marine, dynamic vegetation and biomass, carbon budgets, etc. - Air Quality: interaction with boundary-layer, biogenic emissions, VOC, dust/aerosols, etc. **More constraints**, i.e. must close energy and water budgets, and those related to air quality and BGC cycles. *Get the right answers for the right reasons!* # Hydrology: River-routing, Groundwater #### **Ensemble mean daily streamflow anomaly** Hurricane Irene and Tropical Storm Lee, 20 August – 17 September 2011 Saturated subsurface flow Superstorm Sandy, 29 October – 04 November 2012 Colorado Front Range Flooding, September 2013 #### **Hurricanes and Inland Flooding** - Physical-based Noah model included in (mesoscale) Hurricane Weather Research & Forecasting model, with little degradation in track & intensity & precip. - Inland flood forecasting (right) using Noah runoff & streamflow model. - Extend to global/ climate models: river discharge to oceans. ### Lakes - Thousands of lakes on scale of 1-4km not resolved by SST analysis -> greatly influence surface fluxes; explicit vs subgrid. - Freshwater lake "FLake" model (Dmitrii Mironov, DWD). - Two-layer. - Atmospheric forcing inputs. - Temperature & energy budget. - Mixed-layer and thermocline. - Snow-ice module - Specified depth/ turbidity. - Used in COSMO, HIRLAM, NAM (regional), and global ECMWF, CMC, UKMO. Yihua Wu, NCEP/EMC ## Human Influences/Management Groundwater **Extraction** Irrigation Reservoirs Land-cover change/deforestation Urban areas/model Proper initial conditions (e.g. via remote sensing), and improved land model physics parameterizations. Challenges of changing land use # Historical Changes ### 300 Years of Land Use Change Point: Area of urban-industrial infrastructure remains small relative to other land-use/cover Elvidge et al., 1997 changes, but its "footprint" has significant land implications. # Estimate of changes in annual NPP 1982-2000 Global monitoring can be performed by satellite, if great care is taken to calibrate and validate retrievals. # Changes in agriculture reflected as NPP changes evident from satellite # Urban expansion into "prime" agricultural land Agriculture to urban Natural vegetation/water to urban R. Shrestha, II Water to agriculture Agriculture/natural vegetation to water (K. Seto, Boston U.) # Aral Sea Background Info Cont. #### **Climate Changes:** - Longer, colder winters - Shorter, drier summers - Growing season shortened to 170 days - Precipitation decreased 10x along shore regions - Salt rain ## Effects of Salt: - Kills crops, trees, and wildlife - Destroys pasture lands - Cotton and crop yields have declined dramatically - Fishing industry devastated (twenty of twenty-four native species extinct) - Roughly ½ of area's bird and mammal species gone #### **Complicating Factors:** - To raise yields, farmers increase use of herbicides, insecticides, fertilizers - Many of the chemicals have accumulated in the ground water - Low flows have concentrated salts, pesticides, toxic chemicals. - Surface water unfit to drink 1984_{R. Shrestha, IITM 2016} 1989 1995 # **Groundwater Pumping** Not only surface water diversion leads to desertification. Pumping of groundwater to supply the city of Tucson, Arizona has lowered the water table over 60m in some locations, causing creeks to run dry, and riparian vegetation to die out, greatly reducing local evapotranspiration. # Subsidence Venice is not the only city sinking into the sea. Houston is subsiding due to groundwater, gas and oil pumping. This is an excellent web source for the battle with a number of period drawings and biographies of the commanders. The San Jacinto Monument would be located about ½ way between the two lines of combatants. The Battleship Texas is moored around where it says "Buffalo Bayou", and Lynch's Ferry is now known as the Lynchburg Ferry. # Land use change in northern Delaware Notice not only the spread of urbanization, but also the loss of wetlands, and the shift of agriculture to consume forest areas as cities spread into farmland. ## **Deforestation** # Albedo & Deforestation - Deforestation with an albedo = rainforest (D0); 6% lighter (D6); and 9% lighter (D9). - Dark grassland → net increase in rainfall. - Light grassland → net decrease. - Pattern of rainfall change is consistent. ## Monsoon region sensitivity Sensitivity experiments of desertification show that monsoon regions are most sensitive to impacts of land use/cover change... Other Vegetation Dirmeyer & Shukla (1996 QJRMS) ## Rainfall Impacts - •The largest impacts are in the monsoon regions of Africa (Sahel and South Africa). - •Second are the land-sea monsoons of South Asia, Australia and North America. - Tropical rainfall intensifies to offset the loss in the subtropics. ## **Rainfall Impacts 2** - •Impacts over Africa are year-round. - •Asia, Australia, S. America have rainfall decreases during summer only. - •North America shows an increase in rainfall. # Sahel Desertification - •Observed patterns of precipitation change were modeled in a GCM by changing regional vegetation to reflect desertification (Xue and Shukla, 1993 J. Climate). - Did overgrazing cause climate change? Did climate variability cause desertification? Feedbacks??? # Land Cover Change and Subtropical Climate ## • Land Climate Interaction # Land-Atmosphere Interactions # Feedback of land Does the cycle between land and atmosphere lead to amplification or damping of climate anomalies? Climate attractors (potential) can be a useful way to visualize this Unstable (positive feedback Positive feedback Neutral ## What is land-atmosphere feedback on precipitation? Precipitation wets the surface... ...causing soil moisture to increase... ...which affects the overlying atmosphere (the boundary layer structure, humidity, etc.)... ...which causes evaporation to increase during subsequent days and weeks... ...thereby (maybe) inducing additional precipitation #### Perhaps such feedback contributes to predictability. Short-term weather predictions are limited by chaos in the atmosphere. Longer term predictions rely on slower moving components of the Earth's system, such as ocean heat content and soil moisture. For soil moisture to contribute to precipitation predictability, two things must happen: - 1. A soil moisture anomaly must be "remembered" into the forecast period. - 2. The atmosphere must respond in a predictable way to the remembered soil ## Soil Moisture Memory Observational soil moisture measurements give some indication of soil moisture memory. Fig. 6. Examples of empirical estimates of autocorrelation functions of time series of soil user in 1-m deep soil layer, t is the lag in months. The lines correspond to the approximation used, figures in the lower left corner are the same as the station numbers. Stations 4 and 5 are in the forest zone, station 29 is in the forest-steppe zone, stations 13 and 16 are in the steppe zone, station 49, as tations 44 and 50 are in the desert. Vinnikov and Yeserkepova, 1991 Vinnikov and Yeserkepova, 1991 Soil moisture timescales of several months are possible. "The most important part of upper layer (up to 1 m) soil moisture variability in the middle latitudes of the northern hemisphere has ... a temporal correlation scale equal to about 3 months." (Vinnikov et al., JGR, 101, 7163-7174, 1996.) R. Shrestha, IITM 2018 101, 7163-7174, 1996.) #### **Memory equation:** $$\rho = \frac{\operatorname{cov}(w_n, w_{n+1})}{\sigma_{w_n} \sigma_{w_{n+1}}} = \frac{\sigma_{w_n}}{\sigma_{w_{n+1}}} \left| \frac{2 - \left(\frac{c R_n}{C_s}\right) - \left(\frac{a P_n}{C_s}\right)}{2 + \left(\frac{c R_n}{C_s}\right) + \left(\frac{a P_n}{C_s}\right)} + \frac{\operatorname{cov}(w_n, F_n)}{\sigma_{w_n}^2} \right| + \frac{\operatorname{cov}(w_n, F_n)}{\sigma_{w_n}^2}$$ The autocorrelation equation effectively relates soil moisture memory to four separate controls: - 1. seasonality in the statistics of the atmospheric forcings, - 2. the variation of evaporation with soil moisture, - 3. the variation of runoff with soil moisture, - 4. correlation between the atmospheric forcings and antecedent soil moisture. ## Seasonality term: $\sigma_{wn}/\sigma_{wn+1}$ Case 2: A month of high σ_p^2 follows several months of low σ_p^2 $\begin{array}{c} \underline{month\ n:} \\ low\ \sigma_{p}^{-2}\ leads\ to \\ only\ a\ restricted \\ range\ of\ \Delta w \\ over\ month \end{array}$ $\begin{array}{c} \underline{\text{month n:}} \\ \text{high } \sigma_p^2 \text{ leads to} \\ \text{a wide range} \\ \text{of possible } \Delta \text{ w} \end{array}$ HIGH SOIL MOISTURE MEMORY LOW SOIL MOISTURE MEMORY ## Persistence in forcing ### (the covariance term) Note: persistence in forcing may result from land-atmosphere feedback. # Effect of Climate Bias on Evaporative Regime ## **Atmosphere's Response to Soil Moisture Anomalies** Three ways of looking for evidence of atmospheric response: 1. Examine observational data. Very difficult 2. Simple analytical models. Advantage: feedbacks can be quantified and easily understood. Disadvantage: ignores some nonlinearities and complexities of system. Examples: Rodriguez-Iturbe et al., WRR, 27, 1899-1906, 1991. Brubaker and Entekhabi, WRR, 32, 1343-1357, 1996.
Liu and Avissar, J. Clim, 12, 2154-2168, 1999. 3. GCM studies. Useful for several reasons: (a) full set of diagnostic out-puts, (b) inclusion of nonlinearities, and (c) ability to do sensitivity studies. #### GCM evidence goes way back... Shukla and Mintz (1982) provide one of the first AGCM studies demonstrating the impact of land moisture anomalies on precipitation: Questions that can be addressed with an GCM: How large is the impact of a land anomaly on the atmosphere? What are the relative roles of ocean variability, land variability, and chaotic atmospheric dynamics in determining precipitation over continents? Studies examining the impact of "perfectly forecasted" soil moisture on the simulation of non-extreme interannual variations. Some examples: Delworth and Manabe, J. Climate, 1, 523-547, 1988. Dirmeyer, J. Climate, 13, 2900-2922, 2000. Douville et al., J. Climate, 14,2381,2403, 2001. Simulated precipitation variability can be described in terms of a simple linear system: #### Total precipitation variance | # of Total Exp. simulations Length years Description A 4 200 yr 800 Prescribed, Evaporation efficiency (ratio of evaporation to potential | | |--|-------------| | A 4 200 yr 800 Prescribed, Evaporation efficiency (ratio o climatological prescribed at every time step | | | climatological evaporation to potential evapor | | | logical ocean seasonally-varying climatologi means | to | | AL 4 200 yr 800 Interactive land, climato-logical ocean | | | AO 16 45 yr 720 Prescribed, SSTs set to seasonally-varyin climatological land, interannually varying | | | ALO 16 45 yr 720 Interactive land, interan- nually varying nually varying run freely SSTs set to interannually-vary values (from obs) LSM in model allowed to run freely | ring
122 | ## Contributions to Precipitation Variability Randy Koster, GSFC, NASA In an additional ensemble, every member of the ensemble is subject to the same time series of evaporation efficiency. Does the precipitation respond coherently to this signal? A variable Ω is defined that describes the coherence between the different precipitation time series. Results for SST control over precipitation coherence: ØΕ 120E 026 020 0.16 0.10 0.06 തട #### Summer # Results for SST and soil moisture control over precipitation coherence # Differences: an indication of the impacts of soil moisture control alone #### Winter Koster et al. (2001) Why does land moisture have an effect where it does? For a large effect, two things are needed: - •a large enough evaporation signal - •a coherent evaporation signal for a given soil moisture anomaly, the resulting evaporation anomaly must be predictable. Both conditions can be related to relative humidity: The dots show where the land's signal is strong. From the map, we see a strong signal in the transition zones between wet and dry climates. #### results from the COLA GCM: Blue shading indicates regions where a continually prescribed soil wetness has a direct impact, through evaporation, on precipitation simulated during boreal summer in a climate model. Percentages indicate the likelihood that simulated impacts are not the product of chance. #### Some critical questions: - 1. How does the atmosphere's response to soil moisture anomalies vary with GCM? - 2. Can we define an objective way of comparing this response? Ω_p (S - W): Impact of sub-surface soil moisture on precipitation The GLACE project showed that while the 12 participating models differ in their land-atmosphere coupling strengths, certain features of the coupling patterns are common to many of the models. These features are brought out by averaging over all of the model results: R. Shrestha, IITM 2016 Paul Dirmeyer, Zichang Guo, COLA GMU #### Precipitation hotspots #### Air temperature hotspots R. Shrestha, IITM 2016 Paul Dirmeyer, Zichang Guo, COLA GMU +positive feedback for C3 & C4 plants, negative feedback for CAM plants positive 131 − − → negative surface layer & ABL R. Shrestha. IITM 2016 *negative feedback above optimal temperature feedbacks: → positive 32 -> negative # Land-Atmosphere Interactions Betts et al (1996) Considered diurnal, seasonal, century time scales # Beljaars (2005) "We discussed including this in a recent document, but dropped it because it was too confusing." ### Adapted from Ek & Holtslag (2004) Characterized land and atmospheric processes and feedbacks for typical daytime with focus on soil moisture vs other processes. #### v.Heerwaarden et al (2009) #### "Ek & Holtslag is too complicated" Negative feedback mechanisms and the relationships among variables that regulate evaporation. # Land-Atmosphere Interactions ## **Land-Atmosphere Feedbacks stand on 2 legs** - Terrestrial When/where does soil moisture (vegetation, soil, snow, etc.) control the partitioning of net radiation into sensible and latent heat flux (and soil heat flux)? - Atmosphere When/where do surface fluxes significantly affect boundary-layer growth, clouds and precipitation? Paul Dirmeyer, George Mason Univ., Joe Santanello, NASA/GSFC ## **Near-Surface Interactions:** Soil moisture – evapotranspiration relationships Evaporative fraction (ef) vs. ga/gc-term ("coupling strength") from surface flux site observations (Fluxnet): - higher ef: - stronger land-atmosphere coupling for forests. - weaker land-atmosphere coupling for cropland and grassland. - lower ef: strong coupling regardless of vegetation type: due to stronger surface heating and turbulence (larger ga, smaller gc). - need to include G-related terms & direct evaporation. # Land-Atmosphere Interactions: Soil moisture/ET role in ABL & cloud development - dry soil/strong inversion -> shallow ABL, no clouds. - dry soil/weak inversion -> deeper ABL, more clouds. - moist soil -> shallow ABL, cloud cover similar. - dry aloft (δq large) -> fewer clouds regardless of inversion Sensitivity tests with many single column model runs. ## Summary - Land models provide surface **boundary conditions** for weather and climate models, and then **proper representation of interactions** with atmosphere. - For weather and climate modeling, land models must have valid (scale-aware) physics and associated parameters, representative land data sets (in some cases near-realtime), proper atmospheric forcing, and initial and cycled land states. Longer time scales require more processes (physics). - Land model **validation** using (near-) **surface observations**, e.g. air temperature, relative humidity, wind, soil moisture, surface fluxes, etc... suggests model **physics improvements**. - The role of land models is expanding for weather and climate in increasingly more fully-coupled Earth-System Models (atmosphere-ocean-land-sea ice-waves-aerosols) with connections between Weather & Climate and Hydrology, Ecosystems & Biogeochemical cycles (e.g. carbon), and Air Quality communities & models on local as well as large scales. # NCEP/EMC Land Team Partners NCEP/EMC Land Team: Michael Ek, Jiarui Dong, Weizhong Zheng, Helin Wei, Jesse Meng, Youlong Xia, Rongqian Yang, Yihua Wu, Caterina Tassone, Roshan Shresth, working with: #### Land Data Assimilation (LDA), LDA Systems (e.g. "NLDAS"): - NASA/GSFC: Christa Peters-Lidard, David Mocko et al. - NCEP/Climate Prediction Center: Kingtse Mo et al. - Princeton University: Eric Wood, Justin Sheffield et al. - Univ. Washington: Dennis Lettenmaier (now UCLA) et al. - Michigan State Univ./formerly Princeton: Lifeng Luo . • NESDIS/STAR land group: Ivan Csiszar, Xiwu Zhan (soil moisture), Bob Yu (Tskin), Marco Vargas (vegetation) et al. - NCAR/RAL: Fei Chen, Mike Barlage, Mukul Tewari, et al. - NWS National Water Center: Brian Cosgrove et al. - Univ. Ariz.: Xubin Zeng et al. - UT-Austin: Zong-Liang Yang et al. - WRF land working group and NOAA/ESRL land model development: Tanya Smirnova/NOAA/ESRL. <u>GEWEX/GLASS, GASS projects</u>: Land model benchmarking, landatmosphere interaction experiments with
many international partners.