MAGMA RESERVOIRS:

EMPLACEMENT AND POST-EMPLACEMENT DYNAMICS

Bulk composition of continental crust dictates that:

- mafic magmas differentiate (to produce evolved compositions),
- mafic cumulates founder or sink (out of the crust).

Magma ascent is buoyancy driven.

Rum intrusion, Scotland

Intrusion	ho Mafics (kg m ⁻³)	ho Host Rocks (kg m ⁻³)	ho Magma (kg m ⁻³)
Ardnamurchan			
Rum	3100-3200	2500-2650	2640
Sept-Iles	3000-3200	2760-2820	2680
Bushveld	3000-3200	2700-2870	2780

Ardnamurchan, Scotland

Sagging : evidence for dense material in the intrusion (not the initial magma)

Rheological behaviour of crustal rocks: brittle and power-law creep. Stresses in post-crystallization phase: imposed by mafic cumulates.

 $\sigma \approx \Delta \rho g h$

 $\Delta \rho$ = density contrast between intrusion and host rocks 300-400 kg m⁻³. h = intrusion thickness 3-8 km. Effective viscosity $10^{15} - 10^{20}$ Pa s (strain rates > 10^{-13} s⁻¹).

Intrusion	Volume (km ³)	Aspect ratio
Ardnamurchan	30	1
Rum	$5.4 10^2$	0.5
Sept-Iles	$2.8 10^4$	0.2
Bushveld	10^{6}	0.04

Driving = buoyancy.

Resisting = viscous shear at top and bottom of intrusion.

Flow of radius R^* , thickness H^* .

For flow over radial distance R^* , kinematic boundary layer extends to distance $\sim R^*$. Characteristic velocity (spreading rate) U_S .

Strain rate $\sim U_S/R^*$.

Bulk horizontal momentum balance:

$$(\rho_T g' H^*) H^* R^* \sim \left[(\mu_- + \mu_+) \frac{U_s}{R^*} \right] R^{*2}$$

Add volume conservation.

$$U_s \sim \frac{\rho_T g' H^{*2}}{\mu_- + \mu_+}$$

$$R(t) \sim \left(\frac{\rho_T g' V^2}{\mu_+ + \mu_-}\right)^{1/5} t^{1/5}$$
$$h(t) \sim \left(\frac{(\mu_- + \mu_+) V^{1/2}}{\rho_T g'}\right)^{2/5} t^{-2/5}$$

End of the spreading phase such that cooling proceeds faster than spreading.

Cooling rate ~
$$\kappa/H$$
.
Spreading rate ~ $\frac{dR}{dt} \sim \left(\frac{\rho_T g' V^2}{\mu_+ + \mu_-}\right)^{1/5} t^{-4/5}$

Thus, critical time for buoyancy reversal:

$$t_c \sim \left(\frac{(\mu_- + \mu_+)V^{1/2}}{\rho_T g' \kappa^{5/4}}\right)^{4/9}$$

. . .

At $t = t_c$, $H = H_c$ and $R = R_c$, corresponding to critical aspect ratio $\alpha_c = H_c/R_C$:

$$\alpha_c \sim \frac{H_c}{R_c} \sim \left(\frac{(\mu_- + \mu_+)\kappa}{\rho_T g' V}\right)^{1/3} = Ai^{-1/3}$$

Dimensionless number Ai:

$$Ai = \frac{\rho_T g' V}{(\mu_- + \mu_+)\kappa}.$$

 $\alpha_c = (2.8 \pm 0.10) A i^{-1/3}.$

 α_c decreases with increasing volume V*.

Dimensionless number Ai = ratio between two velocity scales. Spreading rate versus and cooling rate (diffusion controlled). Cooling rate.

$$U_d = \frac{\kappa}{H^*}$$

Set $H^* \sim V^{1/3}$ and $R^* \sim V^{1/3}$:

$$\frac{U_s}{U_d} = \frac{\rho_T g' V}{(\mu_- + \mu_+)\kappa} = Ai$$

Large Ai: spreading faster than cooling = intrusion extends to large distances. Small Ai: cooling faster than spreading = intrusion does not spread.

Sagging ? inward dips increase towards axial zone: not consistent with sagging (flexural behaviour) suggests incipient foundering

Sequence of increasing deformation with increasing volume. Sagging – funnel structure – sinking (?)

Sequence of increasing deformation with increasing volume. Complex shapes for small aspect-ratio intrusions.

Teardrop regime

"Jellyfish" regime

t=710s

Annular regime

t=870 s

Idealized cross-section

Sinking regime:

very small residual volume at original emplacement depth

Residual intrusion regime: large volume left at original emplacement

level

BUT

intrusion

strongly deformed

