Probing high-scale physics using gravitational wave detectors

BHUPAL DEV

Max-Planck-Institut für Kernphysik, Heidelberg

BD and A. Mazumdar, Phys. Rev. D 93, 104001 (2016) [arXiv:1602.04203]

Workshop on Perspectives on the Extragalactic Frontier ICTP, Trieste

May 5, 2016

A new window on the Universe

New Physics with GWs

"Hearing" things never seen before

- Three kinds of astrophysical sources:
 - Transient (e.g. compact binary inspirals)
 - Continuous (e.g. rapidly spinning neutron star)
 - Stochastic (e.g. superposition of unresolved sources)
- Stochastic signal also from cosmic events, e.g. inflation, cosmic strings, domain walls, phase transition.
- GWs can probe physics all the way up to the Planck epoch.

Phase Transition Basics

Bhupal Dev (MPIK)

First Order Phase Transition

ø,

Bubble Nucleation

Energy Density

 In the envelope approximation [Caprini, Durrer, Servant (PRD '08); Huber, Konstandin (JCAP '08); Espinosa, Konstandin, No, Servant (JCAP '10); Weir '16],

$$rac{
ho_{
m GW}}{
ho_{
m tot}} \propto \kappa^2 v^3 \left(rac{lpha}{1+lpha}
ight)^2 \left(rac{H_*}{eta}
ight)^2.$$

In the strong first-order, thin-wall and vacuum-dominated limit:

$$\kappa \equiv \rho_v / \rho_{\rm vac} \to 1, \quad \alpha \equiv \rho_{\rm vac} / \rho_* \gg 1, \quad v \to 1.$$

- GW signal at T_* only depends on the nucleation rate $\beta/H_* \sim \log(m_{\text{Pl}}/T_*)$. [Kosowsky, Turner, Watkins (PRL '92); Kamionkowski, Kosowsky, Turner (PRD '94)]
- In realistic models with a given effective potential, typically $\beta/H_* \simeq 5/\epsilon \sim \mathcal{O}(100 1000)$. [Schwaller (PRL '15); Jaeckel, Khoze, Spannowsky '16]

Bhupal Dev (MPIK)

New Physics with GWs

GW Spectrum

$$\Omega_{\rm GW}(f)h^2 \equiv \frac{1}{
ho_c} \frac{d
ho_{\rm GW}}{d\log f} = \Omega_0 h^2 \, \frac{(p+q)\left(rac{f}{f_0}
ight)^p}{q+p\left(rac{f}{f_0}
ight)^{p+q}} \,,$$

with p = 2.8, q = 1.0, and the peak values are [Huber, Konstandin (JCAP '08)]

$$\begin{split} f_0 &\simeq (1.65 \times 10^{-7} \text{ Hz}) \left(\frac{0.62}{1.8 - 0.1 v + v^2} \right) \left(\frac{\beta}{H_*} \right) \left(\frac{T_*}{1 \text{ GeV}} \right) \left(\frac{g_*}{100} \right)^{1/6}, \\ \Omega_0 h^2 &\simeq (1.67 \times 10^{-5}) \kappa^2 \left(\frac{\alpha}{1 + \alpha} \right)^2 \left(\frac{0.11 v^3}{0.42 + v^2} \right) \left(\frac{H_*}{\beta} \right)^2 \left(\frac{100}{g_*} \right)^{1/3}, \end{split}$$

- $\Omega \propto f^{2.8}$ at low frequencies and f^{-1} at high frequencies.
- GW signal strength *decreases* with larger g_* .
- Need $T_* \sim 10^7 10^8$ GeV and $\beta/H_* \lesssim 100$ to be accessible at aLIGO.

Bhupal Dev (MPIK)

LIGO Sensitivity

BBH Background

Inflationary Spectrum (Blue-Tilted)

 Possible distinction between different stochastic GW signals using the frequency dependence:

$$\Omega_{\rm GW} \propto f^{2.8}$$
 (Phase Transition)
 $f^{2/3}$ (BBH)
 $f^{n_t(<0.36)}$ (Inflation)

• Feasible with the future worldwide GW network (LIGO+VIRGO+GEO+KAGRA+LIGO-India).

New Physics Scenarios

Toy model with two scalar fields (φ, χ):

$$V(\phi,\chi) = \frac{1}{4!}g^2(\phi^2 - v_*^2)^2 + \frac{1}{2}h\phi^2\chi^2.$$

• χ -field induces thermal corrections to the effective potential of ϕ :

$$V_T(\phi) = \frac{1}{24}h(T^2 - T_*^2)\phi^2 + \cdots$$
, where $T_* = \sqrt{\frac{2g}{h}}v_*$

- First-order phase transition for $T_*/v_* \leq 1$. [Jinno, Moroi, Nakayama (PLB '12)]
- Realistic examples: PQ axion, High-scale Supersymmetry.

Conclusion

- LIGO discovery has opened a new window on the Universe.
- Advanced LIGO design sensitivity can probe stochastic GW from cosmological phase transitions with $T_* \sim 10^7 10^8$ GeV.
- Distinct energy spectrum, as compared to other possible sources.
- Can be distinguished in future worldwide GW network.
- An unprecedented opportunity to constrain BSM physics at energy scales not directly accessible by laboratory experiments.