

If space is perfectly flat (
$$\kappa = 0$$
), then

$$H(t)^{2} = \frac{8\pi G}{3c^{2}} \varepsilon(t)$$
For a given value of the Hubble parameter *H*,
there exists a critical density ε_{c} for which space is flat.

$$\varepsilon_{c,0} = \frac{3c^{2}H_{0}^{2}}{8\pi G} = 4.9 \pm 0.3 \text{ GeV m}^{-3}$$

$$\rho_{c,0} = \frac{\varepsilon_{c,0}}{c^{2}} = (1.3 \pm 0.1) \times 10^{11} \text{ M}_{\odot} \text{ Mpc}^{-3}$$

Friedmann equation + fluid equation: 2 equations, 3 unknowns. $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3c^2}\varepsilon(t) - \frac{\kappa c^2}{R_0^2}\frac{1}{a(t)^2}$ $\dot{\varepsilon} + 3\frac{\dot{a}}{a}[\varepsilon(t) + P(t)] = 0$ We need equations of state, relating the pressure *P* of each component to its energy density ε . $P = P(\varepsilon)$

Example: a gas of highly relativistic particles (="radiation")

$$\varepsilon = n \left\langle \frac{hc}{\lambda} \right\rangle = \alpha T^{4} \text{ [blackbody]} \left[\alpha = \frac{\pi^{2}}{15} \frac{k^{4}}{\hbar^{3}c^{3}} \right]$$
radiation:
photons
neutrinos
(kT>m,c^{2})
electrons
(kT>0.5MeV)
quarks
(kT>1GeV)
P = $\frac{1}{3}n \left\langle \frac{hc}{\lambda} \right\rangle = \frac{1}{3}\alpha T^{4} \text{ [blackbody]}$

Friedmann equation with cosmological constant:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3c^2}\varepsilon(t) - \frac{\kappa c^2}{R_0^2}\frac{1}{a(t)^2} + \frac{\Lambda}{3}$$

1917: de Sitter investigates a universe with nothing but Λ :

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{\Lambda}{3}$$

This implies exponential expansion:

$$a(t) \propto \exp(H_0 t)$$
, where $H_0 = (\Lambda / 3)^{1/2}$

We know the universe contains matter ($\Omega_{m,0}$) and a little bit of radiation ($\Omega_{r,0} \ll 1$).

We permit the universe to have a cosmological constant ($\Omega_{\Lambda,0}$).

The total density parameter is $\Omega_0 = \Omega_{\Lambda,0} + \Omega_{m,0} + \Omega_{r,0}$.

If $\Omega_0 \neq 1$, the Friedmann equation tells us space is curved:

$$1 - \Omega_0 = -\kappa \left(\frac{c / H_0}{R_0}\right)^2$$

How can we use **observations** of the universe around us to constrain $\Omega_{m,0}$ and $\Omega_{\Lambda,0}$?

