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Λ CDM 

[CMB provides ~0.005% 
of today’s energy density.] 

If space is perfectly flat (κ = 0), then

H (t)2 = 8πG
3c2

ε(t)

For a given value of the Hubble parameter H,        
there exists a critical density εc  for which space is flat. 

εc,0 =
3c2H0

2

8πG
= 4.9 ± 0.3GeVm−3

 
ρc,0 =

εc,0
c2

= (1.3± 0.1)×1011M⊙Mpc
−3
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a(t)2

Friedmann equation: 1 equation, 2 unknowns.

We need another equation: the fluid equation.

V (t)∝ a(t)3

E(t) =V (t)ε(t)

 

dE + PdV = dQ [but dQ = 0]
!E + P !V = 0

comoving 
box

 
!ε +3 !a

a
(ε + P) = 0
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Friedmann equation + fluid equation: 2 equations, 3 unknowns.

We need equations of state, relating the pressure P 
of each component to its energy density ε.

 
!ε +3 !a

a
[ε(t)+ P(t)]= 0

P = P(ε )
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P = wε
where w is the dimensionless equation-of-state parameter.

Example: a gas of nonrelativistic particles (=“matter”)

P = nkT = ρ kT
m

= ρ
v2

3

ε = ρc2 + 1
2
ρ v2 ≈ ρc2

 
w = P

ε
≈
v2

3c2
≪1

w~10-12         
for N2 at room 
temperature 

matter:            
DM particles 
free electrons 
(kT<0.5MeV) 
free protons 
(kT<1GeV)     
atoms      
molecules         
stars            
galaxies 

Example: a gas of highly relativistic particles (=“radiation”)

P = 1
3
n hc

λ
= 1
3
αT 4 [blackbody]

ε = n hc
λ

=αT 4 [blackbody]

w = P
ε
= 1
3

radiation:            
photons 
neutrinos 
(kT>mνc2) 
electrons 
(kT>0.5MeV) 
quarks 
(kT>1GeV) 
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What’s the value of w for dark energy?

A definition for “dark energy”: a component of the 
universe that makes the expansion speed up (ä > 0).
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= 8πG
3c2

ε − κ c
2

R0
2
1
a2

 
!ε +3 !a

a
(ε + P) = 0

 

!!a
a
= − 4πG

3c2
(ε + 3P)

The Friedmann equation

and the fluid equation

can be combined into the 
acceleration equation:

 

!!a
a
= − 4πG

3c2
ε(1+ 3w)

Dark energy must have 
ε(1+ 3w) < 0.

If dark energy has ε > 0, 
then it must have w < −1/3. dark energy 

w < −1/3 

cosmological 
constant (Λ) 
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Einstein introduced the cosmological constant Λ 
in 1917, to create a static universe.

 

!!a
a
= − 4πG

3c2
(ε + 3P) = − 4πG

3
ρmatter only:

Therefore, ä=0 requires ρ=0.

matter + Λ:
 

!!a
a
= − 4πG

3
ρ + Λ

3
Therefore, ä=0 requires Λ=4πGρ.
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ε(t)−κ c
2

R0
2

1
a(t)2

+ Λ
3

Friedmann equation with cosmological constant:

1917: de Sitter investigates a universe with nothing but Λ: 
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= Λ
3

This implies exponential expansion:

a(t)∝ exp(H0t), where H0 = (Λ / 3)1/2
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What is the cosmological constant?

“What, however, blows up the ball? 
What makes the universe expand or 

swell up? That is done by the Lambda. 
Another answer cannot be given.” 

Gµν + Λgµν =
8πG
c4

Tµν modification of Einstein tensor [Einstein 1917]

Gµν =
8πG
c4

Tµν − Λgµν contribution to energy density & pressure
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2
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Friedmann equation:

We can think of Λ as a component of     
the universe with constant energy densityεΛ = c2

8πG
Λ

 
!ε = −3 !a

a
(ε + P)Fluid equation:

For εΛ to be constant, we need 
PΛ = -εΛ, or w = −1.

dark energy 
w < −1/3 

cosmological 
constant (Λ) 

w = −1 
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Let’s consider a universe containing        
matter (w=0), radiation (w = 1/3), and Λ (w = −1).

Energy and pressure are additive:
ε = ε i

i
∑ P = wiε i

i
∑

ε i = ε i,0a
−3(1+wi )

It is possible that acceleration is due to dark 
energy with w ≠ -1, or to modified gravity, 
but Λ provides a useful parameterization. 

 

!ε i
ε i

= −3 !a
a
(1+wi )

ε = (mc2 )n ∝ a−3

ε = (hc
λ
)n ∝ a−1a−3 ∝ a−4

Although photon number is not conserved, energy density 
of starlight is just 10% of the energy density of the CMB. 
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Ωi =
ε i
εc

where εc is the critical density at which 
the universe is spatially flat.

εc,0 =
3c2H0

2

8πG
= 4900 ± 300 MeVm−3

Relative densities are expressed in terms of 
the dimensionless density parameter Ω.

Cosmic microwave background Cosmic neutrino background 
(massless neutrinos)

nγ (E)dE ∝ E2dE
exp(E / kT )−1

nν (E)dE ∝ E2dE
exp(E / kT )+1

εγ ,0 =αT0
4 = 0.2606MeVm−3

Tγ ,0 = 2.7255K

Tν ,0 =
4
11

⎛
⎝⎜

⎞
⎠⎟
1/3

Tγ ,0 = 1.945K

Ωγ ,0 = 5.35 ×10
−5 Ων ,0 = 0.681Ωγ ,0 = 3.65 ×10

−5

εν =
7
8
αT 4 (for each of 

3 species) 

Density parameter for background radiation
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Even if all species of neutrino were massless today, 
radiation would have Ωr,0 = 0.00009 << 1.

Recent expansion of the universe can be 
expressed in terms of ΩΛ,0 (cosmological constant) 

and Ωm,0 (matter, dark + baryonic).

 

!!a
a
= − 4πG

3c2
(ε + 3P) = − H

2

2
(Ωm +ΩΛ − 3ΩΛ )

 

!!a
a
= 0 today if Ωm,0 = 2ΩΛ,0
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κ = +1κ = −1

 

!!a
a t=t0

= 0 if Ωm,0 = 2ΩΛ,0

κ = 0  if  Ωm,0 +ΩΛ,0 = 1
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3

H0(t−t0)

a

Consider 4 universes, all of 
which have Ωm,0 = 0.3:

ΩΛ,0=0.7 

ΩΛ,0= −0.3 

ΩΛ,0=1.8 

ΩΛ,0=1.7134 
=gnab gib 

You are 
here. 

We know the universe contains matter (Ωm,0)                                 
and a little bit of radiation (Ωr,0<<1).

We permit the universe to have a cosmological constant (ΩΛ,0).

The total density parameter is Ω0 = ΩΛ,0+Ωm,0+Ωr,0.

If Ω0≠1, the Friedmann equation tells us space is curved:

1−Ω0 = −κ c /H0

R0

⎛
⎝⎜

⎞
⎠⎟

2

How can we use observations of the universe 
around us to constrain Ωm,0 and ΩΛ,0?
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Learning about Ωm,0 and ΩΛ,0 
from observing standard candles 
(objects of known luminosity L). 

Current proper distance to the standard candle: 

dp (t0 ) = r

Photons we observe at t0 were emitted at te.                      
Photons follow a null geodesic: ds2 = −c2dt2 +a(t)2dr2 = 0. 

dr = cdt
a(t)

dp (t0 ) = r = c
dt
a(t)te

t0∫

dp (t0 ) = r = c
dt
a(t)te

t0∫

We can change our variable of integration from t to a:

 

da
a

=
!adt
a

= Hdt ⇒ dp (t0 ) = c
da
a2Hae

1

∫
We can change our variable of integration from a to 1+z = 1/a:

da
a

= − dz
1+ z

⇒ dp (t0 ) = c
dz
H (z)0

z

∫

Proper distance encodes 
expansion history:
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dp (t0 ) = c
dz
H (z)0

z

∫
The redshift z is observable.                                             
The Hubble parameter is given by the Friedmann equation: 

H (z)2

H0
2 = Ωm,0 (1+ z)

3 + (1−Ωm,0 −ΩΛ,0 )(1+ z)
2 +ΩΛ,0

Thus, the relation between proper distance 
and redshift is a (fairly) simple integral.
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dot-dash: flat, lambda-only (ΩΛ,0=1, Ωm,0=0)      
dotted: flat, matter-only (ΩΛ,0=0, Ωm,0=1)               
solid: Benchmark Model (ΩΛ,0=0.69, Ωm,0=0.31)
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In the limit that z goes to infinity, 
dp(t0) approaches the particle 

horizon distance dhor(t0).

Benchmark model:                       
dhor(t0) = 3.2 c/H0 = 14,000 Mpc 

Stars more than 14,000 Mpc away 
haven’t had time to send us light yet.

Alas! Proper distance isn’t 
directly measurable. How 

can we estimate the distance 
from observable properties? 

We can measure the standard candle’s redshift z.  
We can (ideally) measure its bolometric flux f. 

We can compute a function 
called the luminosity distance

dL ≡
L
4π f

⎛
⎝⎜

⎞
⎠⎟

1/2This is how Edwin 
Hubble estimated 

distances. 

dL = dp if 
space is static 
and Euclidean. 
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In an expanding, spatially 
curved universe,

f = L
4πSκ (r)

2 (1+ z)2

and thus
dL = Sκ (r)(1+ z).

dL ≈ dp (t0 )(1+ z) > dp (t0 )
If space is nearly flat, then

& luminosity distance is an 
overestimate of proper distance.

A preferred standard candle of cosmologists:         
Type Ia supernovae (alias thermonuclear supernovae).
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m-M = ‘distance modulus’ 
= 5 log (dL / 1 Mpc) + 25 

Luminosity distance vs. z for 580 type Ia supernovae
Λ 

matter 

Bench-
mark 10,000 Mpc 

1000 Mpc 

100 Mpc 

95% confidence 
interval for the type Ia 

supernova results:

(‘Accelerating’ result is 
robust: doesn’t depend 
on the Λ assumption.) 
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