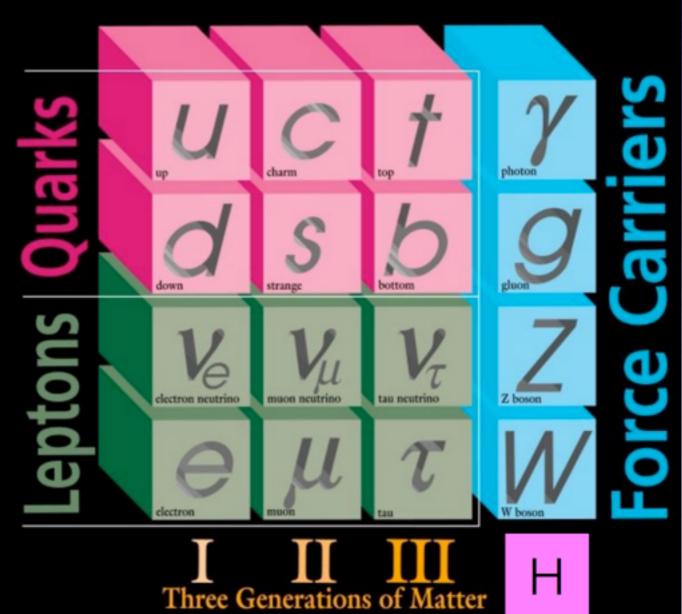
Dark Matter Lecture 2: Theoretical Models

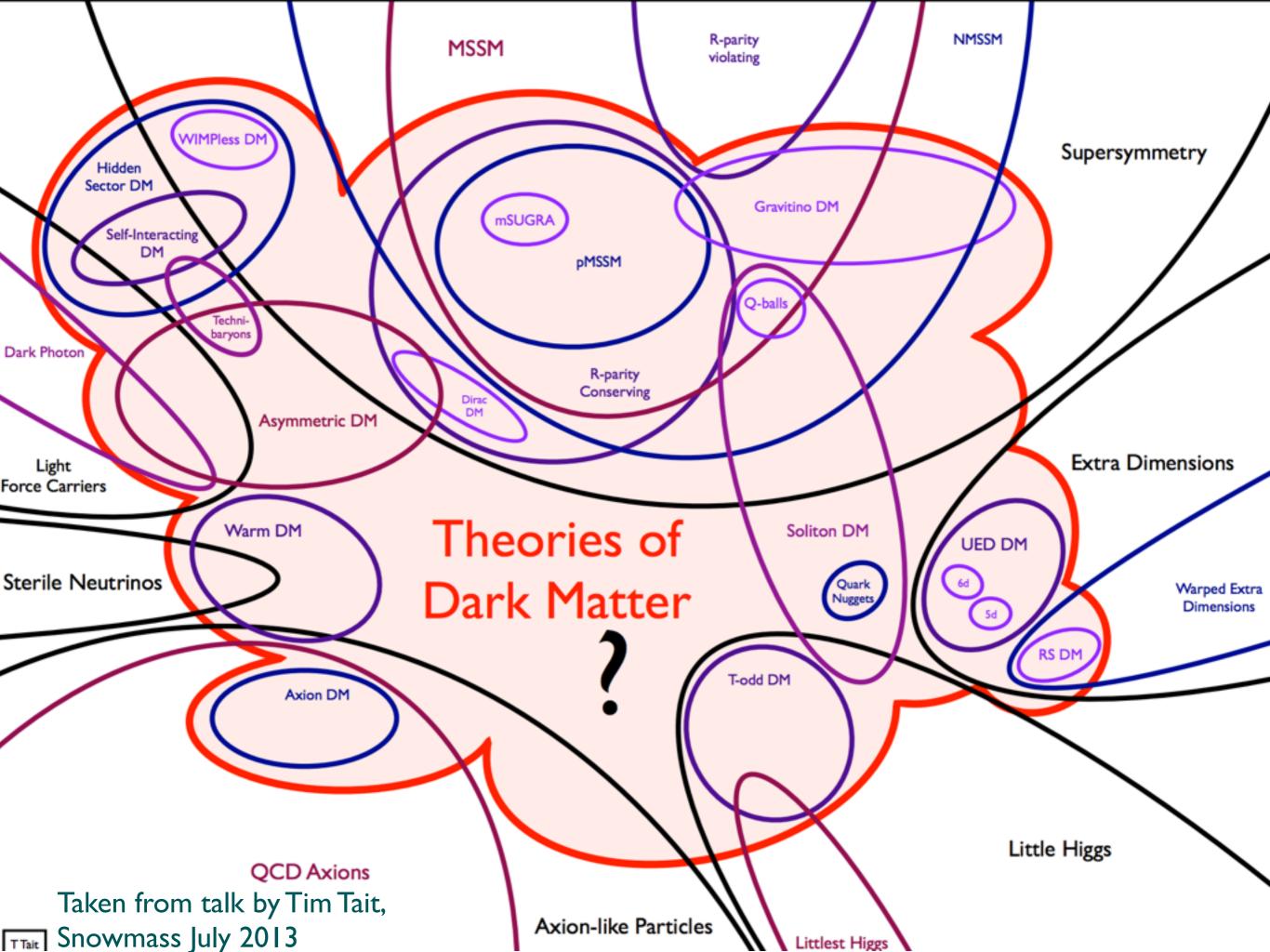
Tracy Slatyer

ICTP Summer School on Cosmology Trieste 6 June 2016

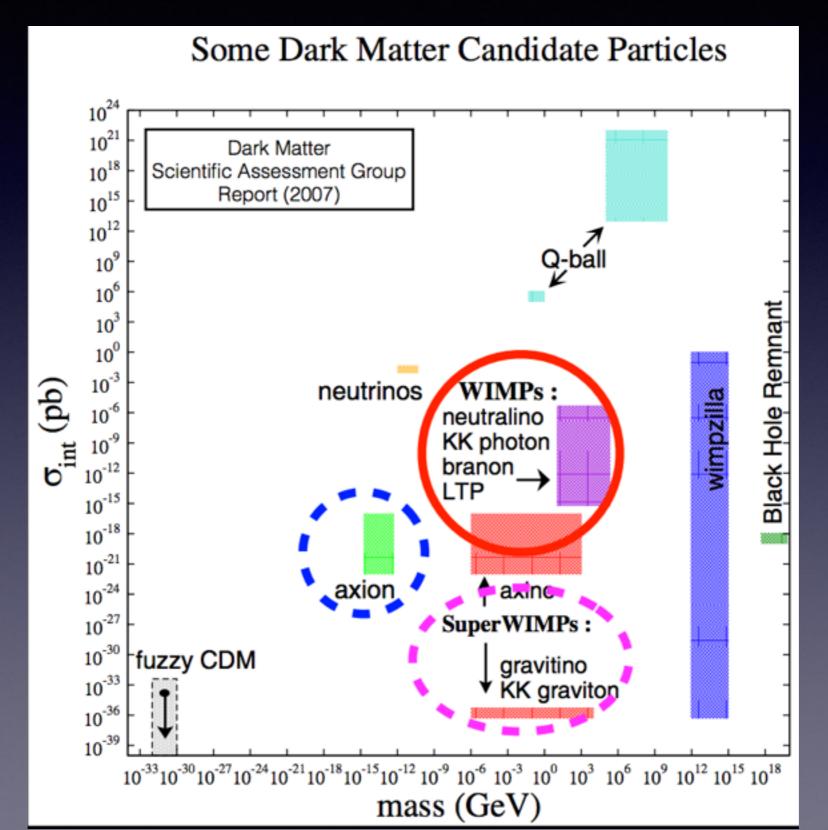
Goals (Lecture 2)

- Describe characteristics needed for a dark matter particle, and their implications:
 - Stabilization
 - Relic density
- Outline and explain the cosmology and key properties of the following scenarios:
 - Weakly Interacting Massive Particles (WIMPs)
 - Axions

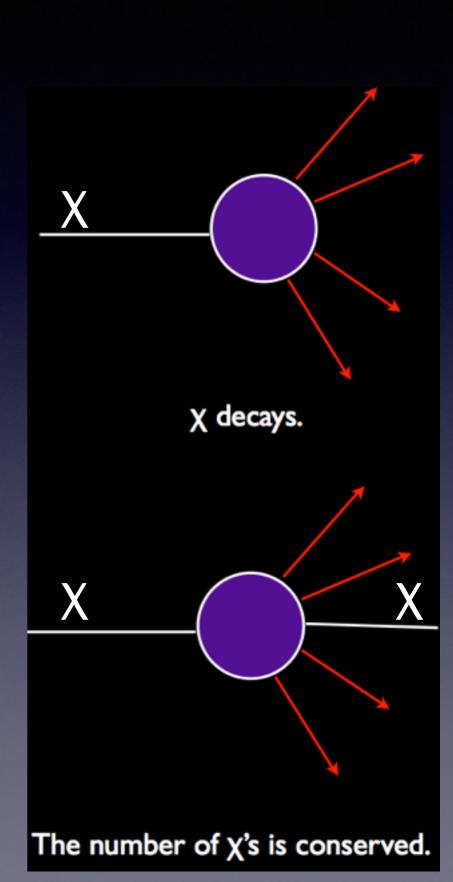

Recap from Lecture I


- The distribution and gravitational effects of dark matter can be a powerful probe of dark-matter properties and interactions, independent of any interaction with the known particles.
- We know that dark matter is:
 - Still around today, i.e. stable on timescales ~age of the universe (rotation curves)
 - "Collisionless" electrically neutral and interactions are fairly weak (Bullet Cluster)
 - "Cold" / slightly warm small free-streaming length in epoch of structure formation (matter power spectrum, Lyman-alpha forest)
- No particle in the Standard Model of particle physics (the "SM") matches these properties.

Beyond the SM


- Photons, leptons, hadrons and W bosons shine too brightly / are charged.
- Z and Higgs bosons are neutral but short-lived.
- Neutrinos are neutral and stable, but too light. They would be hot dark matter - cannot comprise all DM.

ELEMENTARY PARTICLES



Huge range of possibilities

Stability

- One mystery is why dark matter is stable especially if it is heavy enough to be "cold" in the early universe
- Sets stringent limits on DM-SM interactions:
 - Easiest route: impose some kind of symmetry to prevent DM from decaying
 - Simplest example is a new kind of "parity" - Z₂ discrete symmetry, forces coupling to SM fields to involve pairs of DM particles.
 - Many more examples!

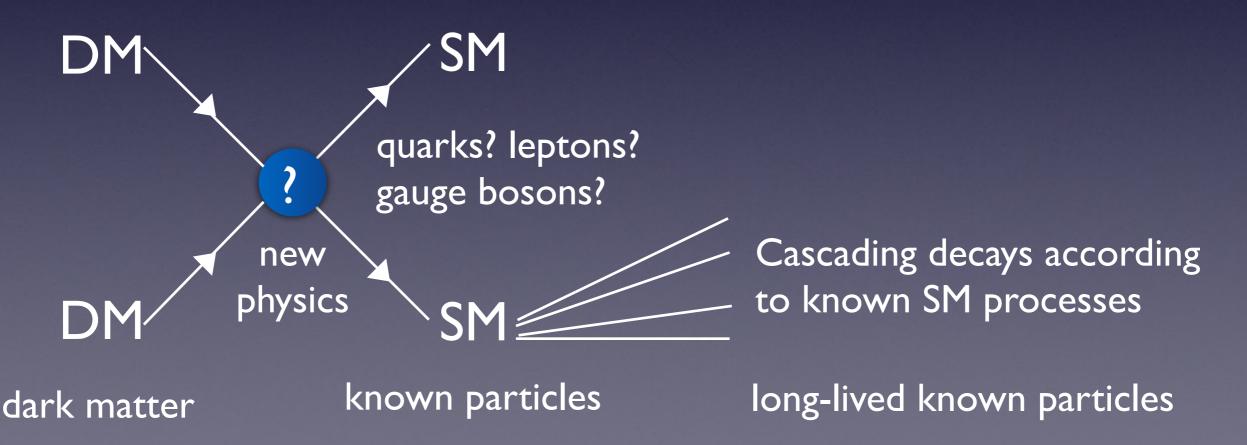
The dark matter abundance

 Any DM model must explain the abundance of dark matter at the epoch of last scattering, precisely measured (from the CMB) to be:

 $\Omega_c h^2 = 0.1186 \pm 0.0020$ $h = H_0 / (100 \text{km/s/Mpc}) = 0.6781 \pm 0.0092$

Q:THERMAL OR NON-THERMAL?

Was the dark matter in thermal equilibrium with the Standard Model during the radiation-dominated epoch? THERMAL NON-THERMAL


Explain how the early abundance of dark matter was depleted -Asymmetric: small asymmetry between dark matter and antiparticle sets final abundance -Symmetric: interactions set final abundance Explain how the required amount of dark matter was produced
-Initial condition from reheating?
-Misalignment mechanism
-Phase transition
-Thermal parent - interactions

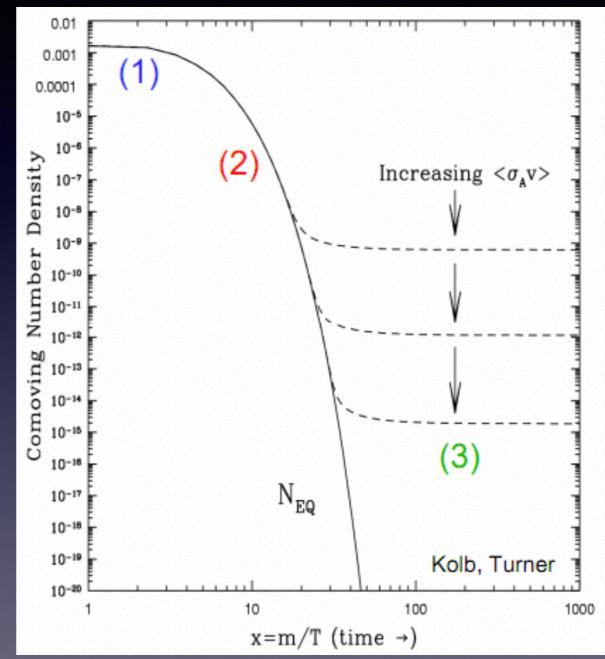
with state in thermal equilibrium determine its abundance

Weakly Interacting Massive Particles (WIMPs)

Thermal abundance

- Suppose dark matter:
 - can annihilate to Standard Model particles
 - was at some point kept in thermal equilibrium with the Standard Model by annihilation

Thermal freezeout


 In the early universe, let the DM particle be thermally coupled to the SM. Can annihilate to SM particles, or SM particles can collide and produce it.

 $\chi\chi\leftrightarrow \mathrm{SM}\,\mathrm{SM}$ (1)

 Temperature(universe) < particle mass => can still annihilate, but can't be produced.

 $\chi \chi \to \text{SMSM}$ $\chi \chi \nleftrightarrow \text{SMSM}$ (2)

 Abundance falls exponentially, cut off when timescale for annihilation ~ Hubble time. The *comoving* dark matter density then <u>freezes out</u>.

So (known) late-time density is set by annihilation rate.

 $\langle \sigma v \rangle \sim 3 \times 10^{-26} \mathrm{cm}^3/\mathrm{s} \sim \pi \alpha^2 / (100 \,\mathrm{GeV})^2$ (3)

Outline of calculation

- Ingredients: annihilation rate for identical particles given by annihilations / dt / dV = $n^2 \langle \sigma v \rangle / 2$
- Boltzmann equation:

$$\frac{dn}{dt} + 3Hn = -\langle \sigma v \rangle \left[n^2 - n_{\rm eq}^2 \right]$$

• Equilibrium density (Boltzmann distribution):

$$n_{\rm eq} = g \left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T}$$

• Temperature of universe (assume radiation domination): $H^2 \propto \rho \propto T^4 \Rightarrow T \propto \sqrt{H} \propto t^{-1/2}$

Estimating freezeout

- For precision solution, can solve this differential equation numerically
- But we can get a simple estimate of important quantities analytically.
 - Freezeout occurs when timescale for expansion ~ timescale for collision: $H \sim n \langle \sigma v \rangle$
 - Up to freezeout, n~n_{eq}, so we require $H \sim g(mT/2\pi)^{3/2} e^{-m/T} \langle \sigma v \rangle$
- Defining x=m/T, we have $H(m)x^{-2} = g(m^2/2\pi)^{3/2}x^{-3/2}e^{-x}\langle\sigma v\rangle^{3/2}$

• Transcendental equation $e^{-x} = x^{-1/2}/C$ has approximate solution

$$x \sim \ln C \sim \ln \left(g (m^2/2\pi)^{3/2} \langle \sigma v \rangle / H(m) \right)$$

note: only depends on m and cross section logarithmically

Estimating freezeout II

• Abundance at freeze-out:

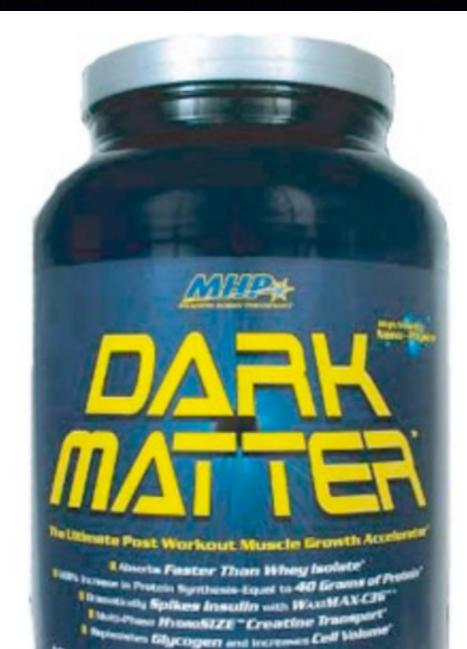
 $n \sim g(m^2/2\pi)^{3/2} x^{-3/2} e^{-x} \sim H(m) x_f^{-2}/\langle \sigma v \rangle$

• For comparison, photon abundance at freezeout:

$$n_{\gamma} \sim T^3 \sim m^3 / x_f^3 \Rightarrow n / n_{\gamma} \sim \left(H(m) / m^2\right) \left(x_f / m\right) / \langle \sigma v \rangle$$

To match measurements of DM mass density from CMB (comparable to critical density and baryon density), DM number density ~9 orders of magnitude below photon number density if m_{DM} = m_{proton}. At higher DM mass, number density must be lower (keeping mass density = mass x number density fixed).

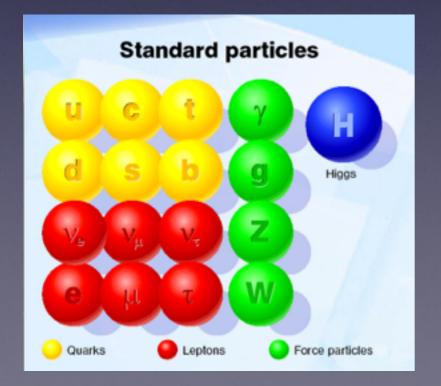
$$H(m) \sim m^2/m_{\rm Pl} \Rightarrow 10^{-9} {\rm GeV} m_{\rm Pl} \sim x_f/\langle \sigma v \rangle \Rightarrow \langle \sigma v \rangle \sim x_f 10^{-10} {\rm GeV}^{-2}$$

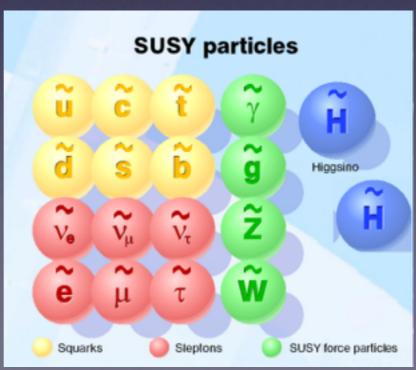

 Taking x_f ~ I as a first approximation (since x_f is a log quantity, can't be too large) gives us a first estimate for cross section.

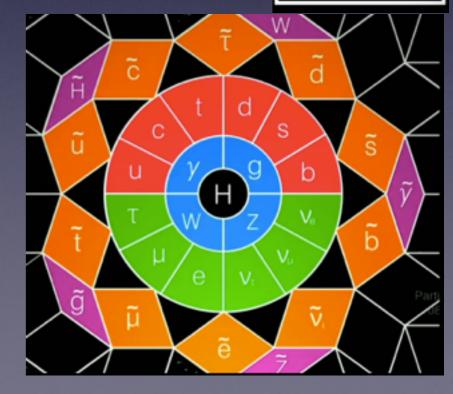
Cross section & mass scale

- Let us estimate $\langle \sigma v \rangle \sim \alpha^2/m^2, \, \alpha \sim 10^{-2}$
- Then from first estimate for cross section, natural mass scale is m~1000 GeV.
- Plug this back into formula for x_f; we find x_f~25. $x_f \sim \ln \left(g/(2\pi)^{3/2} m m_{\rm Pl} \langle \sigma v \rangle \right)$
- This gives us a better cross section estimate: $\langle \sigma v \rangle \sim 2 \times 10^{-9} \text{GeV}^{-2} \approx 2 \times 10^{-26} \text{cm}^3/\text{s}$
- Corresponds to mass scale of a few hundred GeV, details depending on coupling and prefactors.

The WIMP miracle

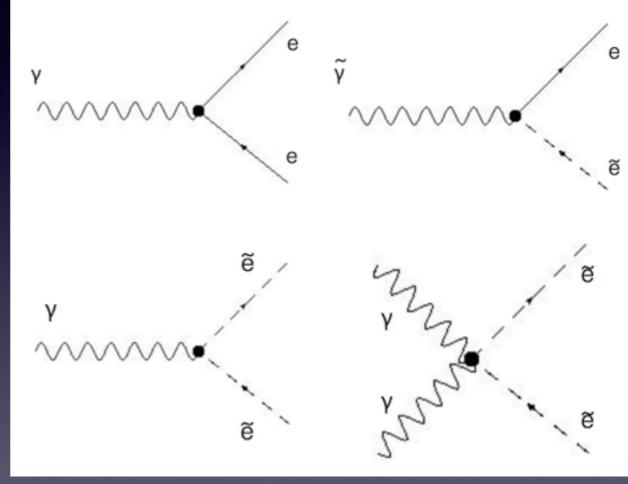

- In a thermal scenario, weak-scale annihilation cross section naturally yields the observed abundance of dark matter.
- Suggestive of new physics not too far above the weak scale.
- Stable WIMPs automatically occur in many scenarios for physics beyond the Standard Model, in particular in supersymmetry.
- However, simplest scenarios are challenged by lack of detection on other fronts; often need some extra ingredient to get the correct abundance.



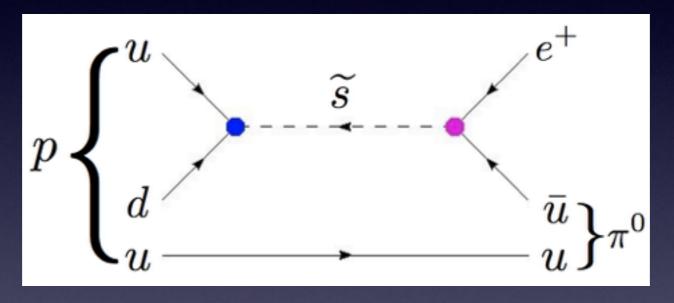

Supersymmetry (SUSY)

- Most famous dark matter candidate is the Lightest Supersymmetric Particle (LSP).
- In supersymmetric theories, every particle has a <u>superpartner</u>.
- Fermions have boson superpartners and vice versa.
- These additional particles cancel what would otherwise be very large predicted contributions to the Higgs mass - motivated independently of DM.
- For an in-depth introduction to SUSY, see e.g. Martin hep-ph/9709356.

Particle Fever D.E. Kaplan



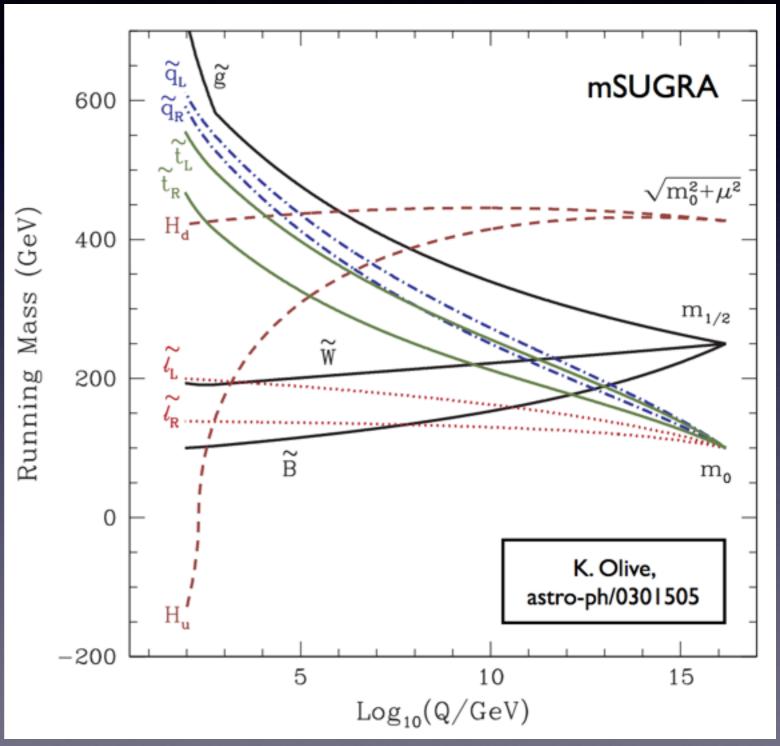
Supersymmetry (II)


- In <u>unbroken</u> supersymmetry, particles and superpartners have same mass and closely related interactions.
- This symmetry must be broken as clearly superpartners do not have mass equal to their (known) counterparts!
- But if we break it "softly", while masses are separated, interactions remain fixed by supersymmetry.
- SUSY theories also inherit huge structure from the Standard Model.
- Consequently many quantities in SUSY theories can be calculated from just the masses of the superpartners.

Example of interactions related by supersymmetry - taken from talk by Tim Tait, August '15

R-parity

- These SUSY interactions naively imply some peculiar behavior!
- For example, they could make protons decay quickly:


- This is pretty clearly not observed (experimental limit: lifetime >10 years).
- Usual approach is to impose a symmetry called R-parity, so the superpartners can only couple in pairs to the ordinary particles.
 - Superpartners have R-parity = I
 - Ordinary particles have R-parity = +1
 - Product of R-parities before and after an interaction must be conserved

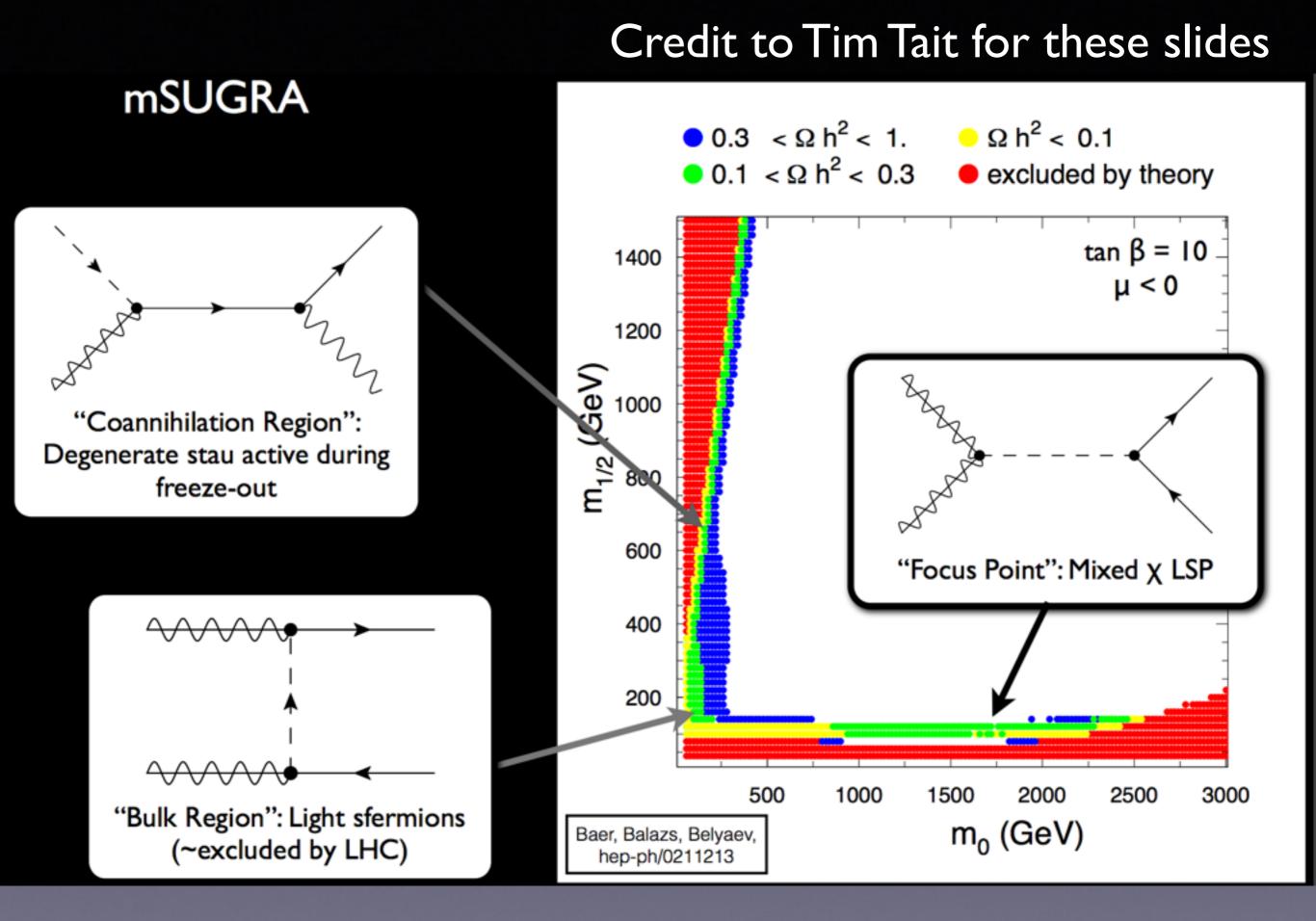
The LSP

- But then lightest particle with R-parity odd (i.e. = -1) cannot decay
 - can't produce any other particles with R-parity I (kinematically forbidden)
 - can't decay just to SM particles (violates R-parity)
- Avoiding proton decay gives us a stable DM candidate!
- Furthermore, any R-parity-odd particles in the early universe must eventually produce stable R-parity-odd particles by decays.
- But does the LSP satisfy other requirements for DM?

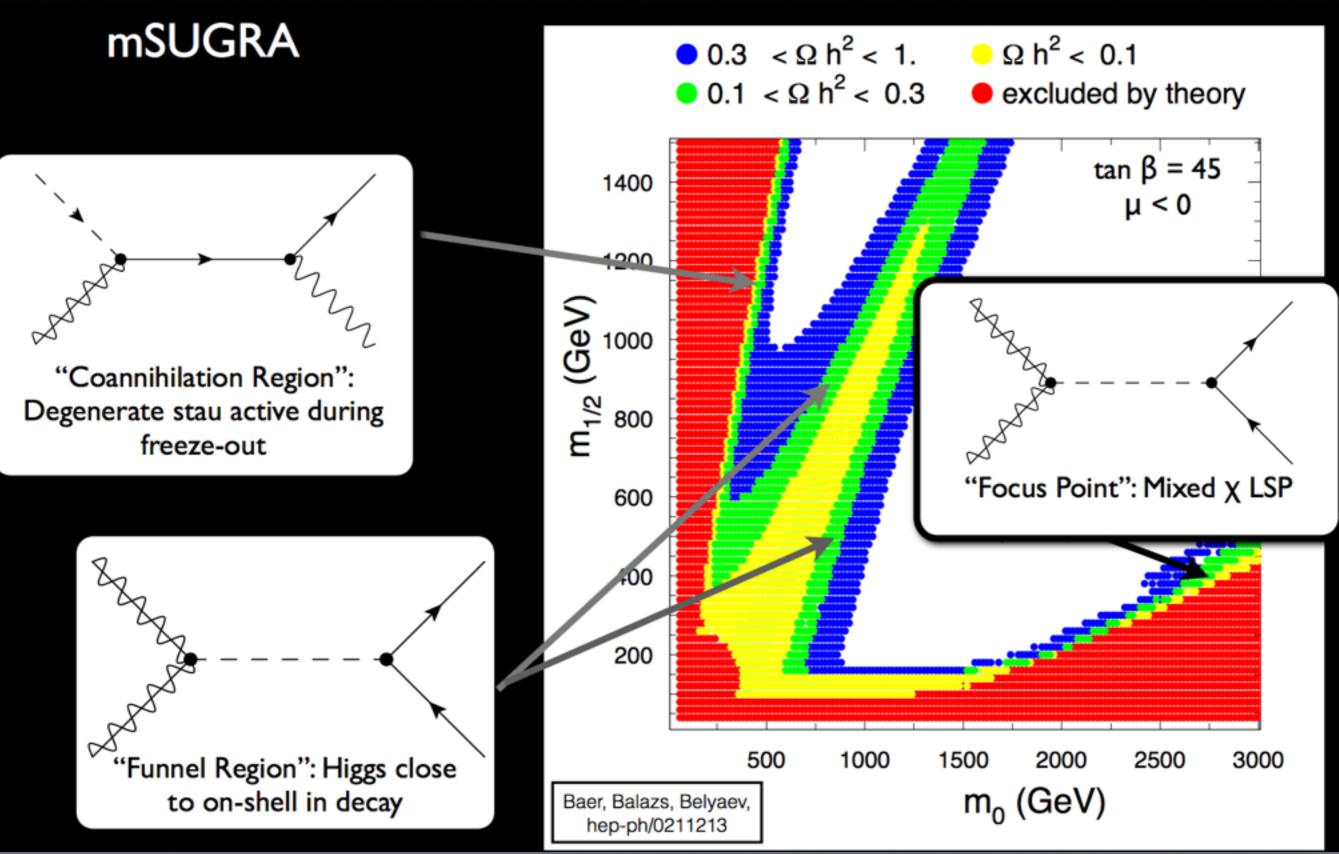
The LSP as dark matter

- First question: is it neutral?
- SUSY models in general have many parameters and the model of supersymmetry breaking matters.
- For a given model, we can compute the spectrum of superpartners, identify the lightest particle, and check its properties.

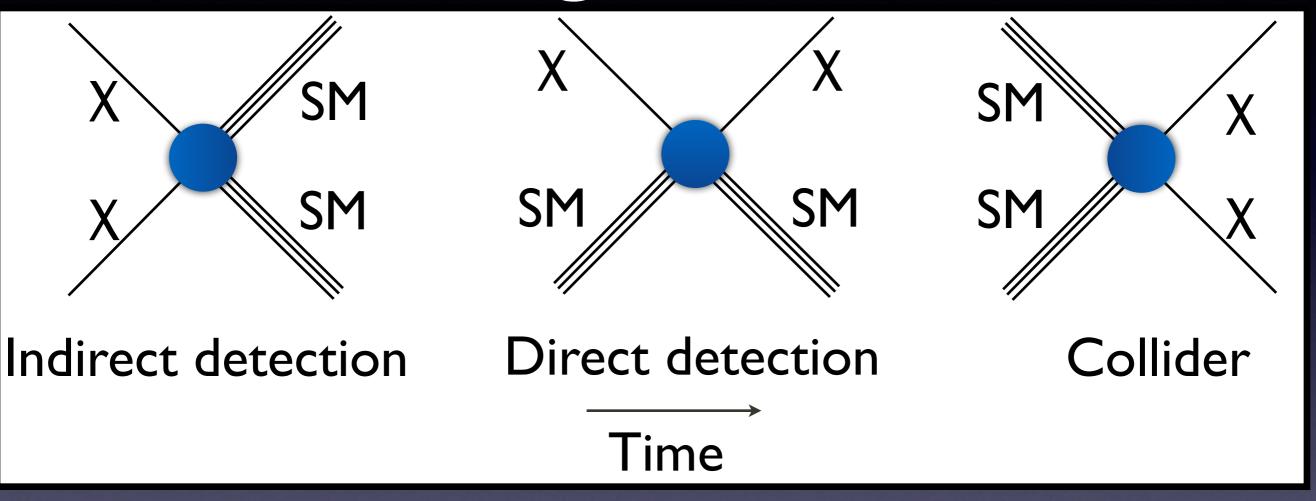
Neutralino dark matter


- Neutral fermionic superpartners = superpartners of the neutral gauge bosons
 - Higgsino = superpartner of the Higgs(es)
 - Wino = corresponds to electrically neutral gauge boson of electroweak SU(2) gauge group (there is also a "chargino" which corresponds to the charged components)
 - Bino = corresponds to gauge boson of the electroweak U(I) gauge group
- In general the physical states (of definite mass) correspond to mixtures of these - details depend on the model
- The lowest-mass such admixture determines the interactions of the DM candidate

The problem with binos


- A common (not universal) situation is for the LSP to behave mostly like a bino (with small wino/higgsino components)
 - Interactions with SM then mostly involve the scalar partners of the fermions ("sfermions")
 - Main annihilation channels for binos produce SM fermions, via interactions with sfermions.
 - But these annihilations are <u>suppressed</u> by m_f²/m_{DM}² smaller than "typical" weak-scale cross section.
- Low annihilation cross sections mean there is typically <u>too much</u> <u>dark matter</u> in the late universe - WIMP miracle doesn't hold up, despite weak-scale masses, due to parametric suppression.

Relic density from SUSY


- Four standard ways to fix this problem in mSUGRA, simplified example SUSY model:
 - "bulk region" make sfermions light (larger annihilation cross sections)
 - "focus point" reduce bino fraction so other, unsuppressed annihilation modes dominate
 - "funnel region" annihilation through Higgs, near twice mass of DM, gives alternative, unsuppressed decay mode
 - "coannihilation region" DM is not the only particle involved in freeze-out, need to include interactions with other neardegenerate particles

Credit to Tim Tait for these slides

Hunting the WIMP

- Beyond motivations from SUSY and thermal freezeout, WIMPs are popular candidates because they have many observable signatures.
- Indirect detection: look for SM particles electrons/positrons, photons, neutrinos, protons/antiprotons produced in WIMP collisions or decay, with sensitive telescopes.
- Direct detection: look for nuclear recoils from WIMPs hitting SM particles with sensitive underground detectors.
- Colliders: produce DM particles in high-energy collisions and look for missing energy (e.g. at the LHC), or search for new light dark-sector particles.

Axion dark matter

The strong CP problem

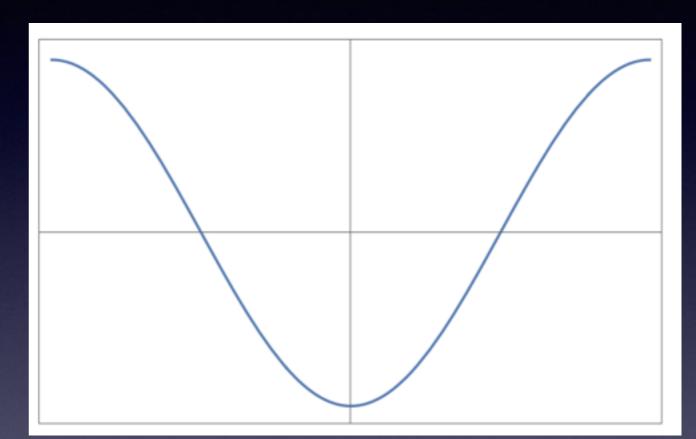
 The Standard Model Lagrangian, describing all known particle interactions, in principle should have a term of the form:

$$\mathcal{L}_{\theta} = \frac{\theta}{16\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu} \text{ gluon field strength}$$

- A term like this can be generated by CP violation elsewhere in the Standard Model, in the terms describing the quarks - no reason for it to vanish.
- But this term induces a neutron electric dipole moment: $d_n = 5.2 \times 10^{-16} \mathrm{e\,cm}$
- Experimentally, we know that: $d_n < 3 \times 10^{-26} \mathrm{e\,cm} \qquad \Rightarrow \theta \lesssim 10^{-10}$
- Why is this value so small?

The axion proposal

- Replace the parameter θ by a dynamical field, call it (by convention) a/f_a where a is the field and $1/f_a$ a coupling.
- Now we just need to explain why a would evolve toward a very small value.
- But the energy stored in this field depends on the value of a potential energy changes as a evolves.
- We can work out this effective potential (I won't give the calculation here - see e.g. Dine's TASI lectures hep-ph/0011376 for much more detail on the strong CP problem) and find:


$$V(a) = -m_{\pi}^{2} f_{\pi}^{2} \frac{\sqrt{m_{u} m_{d}}}{m_{u} + m_{d}} \cos(a/f_{a})$$

pion decay constant $m_\pi pprox 135 {
m MeV}$ pion mass

 $f_{\pi} \approx 93 \mathrm{MeV}$

The axion potential

- Field should evolve toward small values of this potential.
- Minima occur at a/f_a = 2nπ; let's look at n=0.
- The potential is parabolic coefficient of *a*² term gives axion mass.

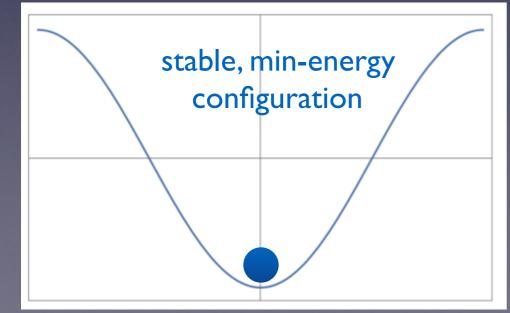
$$V(a) = m_{\pi}^{2} f_{\pi}^{2} \frac{\sqrt{m_{u} m_{d}}}{m_{u} + m_{d}} + \frac{1}{2} a^{2} \left(\frac{f_{\pi}}{f_{a}}\right)^{2} m_{\pi}^{2} \frac{\sqrt{m_{u} m_{d}}}{m_{u} + m_{d}} + \mathcal{O}(a^{4})$$
$$m_{a} = \frac{f_{\pi} m_{\pi}}{f_{a}} \left(\frac{m_{u} m_{d}}{(m_{u} + m_{d})^{2}}\right)^{1/4} \approx 0.6 \text{meV}\left(\frac{10^{10} \text{GeV}}{f_{a}}\right)$$

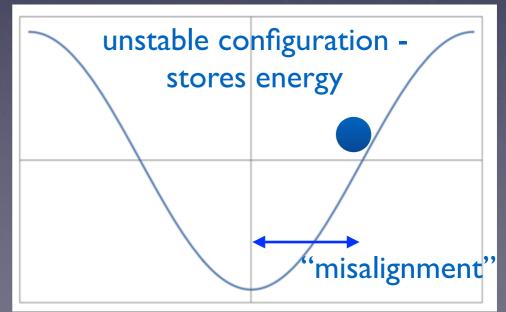
Axion properties

- Axion coupling to Standard Model fields is controlled by the coupling f_a, although exact couplings depend on details of model.
 - "DFSZ axion" axion couples to photons, gluons, leptons, quarks
 - "KSVZ axion / hadronic axion" axion couples to photons and gluons, but at lowest order no coupling to leptons or light quarks
- Axion mass is inversely proportional to their coupling to Standard Model fields - weakly coupled axions can be <u>very</u> light.
- One might think this makes them poor DM candidates too hot?

Thermal axions

- Coupling for axions can be very weak
 - In contrast to WIMPs, question is not "when did they fall out of equilibrium" but "were they ever in equilibrium"?
- Axions produced in early universe by interactions of photons, pions
- Axions can also decay and are produced singly, not in pairs (no symmetry keeping them stable)
 - Need to check lifetime is >> age of universe
 - Solve Boltzmann equation including decay + all production processes


Thermal axions as hot dark matter


- Timescale for decay to photons is approximately given by: τ ~ 10²⁴s (^{m_A}/_{eV})⁻⁵

 Age of universe ~ 10¹⁰ yr ~ π x 10¹⁷ s => for axions to be
- Age of universe ~ 10¹⁰ yr ~ π x 10¹⁷ s => for axions to be around today, must be lighter than ~20 eV (unless decay suppressed in specific model)
 - Side note: at axion masses between about 20 eV and 300 keV, the photons from this process would disrupt nucleosynthesis!
- Solving Boltzmann equation, axions could attain thermal equilibrium if $m_a > 10^{-3} 10^{-2} \text{ eV}$
- In this case, very roughly, fraction of critical density in axions: $\Omega_{axions} \sim \mathcal{O}\left(\frac{m_a}{100 eV}\right)$ hot dark matter - needs to be small fraction of total DM $m_a < I eV$ is OK

Non-thermal axions as cold dark matter

- But what if axions never equilibrate with SM?
- Sufficiently cold, light axions behave like a classical scalar field, evolving in axion potential - not individual particles
 - Q: How does the field evolve?
 - A: If initially displaced from minimum of potential (by some "misalignment angle"), must "roll" toward that minimum

An evolving scalar field

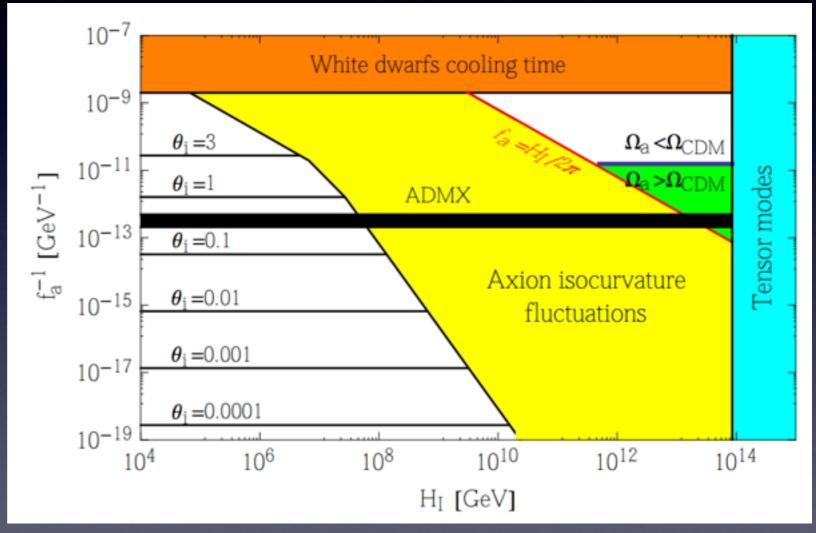
 $\frac{d^2a}{dt^2} + 3H\frac{da}{dt} + m_a^2 a = 0$ equations of motion for scalar field in FRW note here a = axion field, not scale factor describes shape of potential near minimum

- For $m_a << H$, approximate solution with da/dt = 0 field does not evolve
- For m_a > H, field begins to oscillate in potential like simple harmonic oscillator with H-dependent friction term ("Hubble friction"). For large t solution has approximate form:

 $a(t) = \Theta_0 f(t) \cos(m_a t) \qquad \mbox{f(t) slowly varying compared to oscillations} \\ \mbox{misalignment angle}$

- Solving for f(t) we find that in both radiation and matter-dominated epochs,
 f(t) scales like I/(scale factor)^{3/2}.
- Energy density stored in axion field falls off like f(t)² ~ I/(scale factor)³. Same behavior as matter can act as cold dark matter.

Axion relic density


- Careful relic density calculation requires solving equation of motion including temperature dependence of axion mass, QCD phase transition, etc.
- Fraction of critical density: $\Omega_{\text{axions}} \approx \Omega_{\text{DM}} \Theta_0^2 \left(\frac{f_a}{5 \times 10^{11} \text{GeV}}\right)^{1.184}$
- Lighter axions = higher f_a = more weakly coupled = larger relic density
- Relic density can always be suppressed by small initial misalignment angle
- But misalignment angle cannot be much larger than 1 axions must have f_a of order 10¹¹ GeV or higher ($m_a \sim 0.1$ meV or smaller) to be all the DM.

Axions and inflation

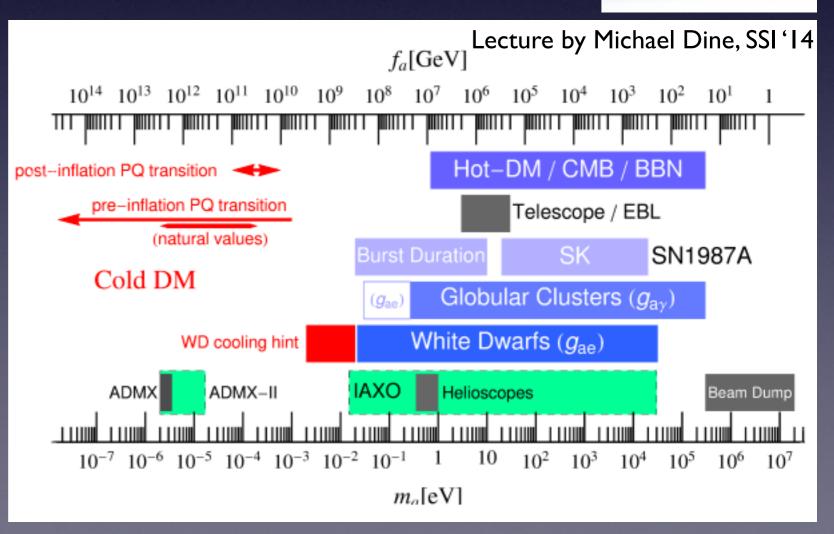
• What value should we expect the misalignment angle to take?

- If axions are produced / misalignment angle is set only <u>after</u> inflation, i.e. H_I >> f_a, different patches of cosmos likely have different misalignment angles - take average of random sample
- If misalignment angle is set (in patches) <u>before</u> inflation, each such patch gets blown up at inflation everywhere in our Hubble volume should have same angle
 - "anthropic axion"?

Baer '15 (1510.07501)

 H_I = Hubble scale of inflation

There are stringent constraints on scenarios where axion is all the DM and the energy scale of inflation is high - see Hertzberg, Tegmark & Wilczek '08


Learning about inflation may tell us about axions! (or vice versa)

Searching for axions

- Main observable property of axions (except possibly for gravitational effects) is their coupling to the photon
- Axions can convert <u>into</u> photons in the presence of a magnetic field
- Axions interact much more weakly than photons - can carry energy through regions where photons would be absorbed
 - Can induce strong B-field, look for signs of axion production
 - Or study astrophysical systems where photon absorption is high

axion-photon interaction in presence of magnetic field

$$G_{a\gamma\gamma}aF^{\mu\nu}\tilde{F}_{\mu\nu} = G_{a\gamma\gamma}a\vec{E}\cdot\vec{E}$$

Summary

- We have discussed the basic properties and cosmology of two major categories of DM models
 - Weakly Interacting Massive Particles (WIMPs)
 - axions
- These furnish examples of non-thermal vs thermal production of the observed relic density
- Very different mass scales (<meV vs GeV-TeV)
- Very different couplings to known particles + detection methods (to be discussed in more depth in later lectures)
- These are not all-encompassing examples! There are (many) models which don't fit into either category - but these two broad scenarios are most popular, and give a sense of the scope of possibilities.