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Learning about Ωm,0 and ΩΛ,0 from 
observing standard yardsticks 

(objects of known physical size l ). 


We can measure the standard yardstick’s redshift z.  
We can (ideally) measure its angular diameter δθ. 

We can compute a function called 
the angular-diameter distance


 
dA ≡

ℓ
δθ

dA = dp if 
space is static 
and Euclidean. 
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The distance ds between the      
ends of the yardstick at time te:


 ds = a(te )Sκ (r)δθ = ℓ

and thus


 
dA ≡

ℓ
δθ

= a(te )Sκ (r) =
Sκ (r)
1+ z

dA ≈
dp (t0 )
1+ z

< dp (t0 )

If space is nearly flat, then


& angular-diameter distance is an 
underestimate of proper distance.


A preferred standard yardstick of cosmologists:                
Hot and cold spots on the Cosmic Microwave Background


Typical CMB photon last scattered from a free 
electron when the temperature was Tls ≈ 2970K.         

Temperature of CMB today: T0 = 2.7255K   
Redshift of the last scattering surface:                      

1+zls = Tls/T0 ≈ 1090 

Planck 2015: 
zls = 1089.90 

± 0.23 



6/7/16	
  

3	
  

Hot & cold spots on the CMB have a preferred angular scale, 
revealed by the temperature correlation function.
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preferred angular scale  
= “first peak”:              

δθ = 0.8° = 0.014 rad 

large angle small angle 

First peak results from standing acoustic waves in the 
photon-baryon fluid that existed before recombination. 


Physical size l ≈ sound 
horizon distance at the 
time of last scattering. 

 
ℓ ≈ ds (tls ) = a(tls )

cs (t)dt
a(t)0

tls∫

 cs ≈ c / 3 ⇒ ℓ ≈ 0.145Mpc
with some 

dependence 
on Ωm,0 
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Angular-diameter distance to the last scattering surface:


 
dA ≡

ℓ
δθ

≈ 0.145Mpc
0.014

≈10Mpc

What combinations of ΩΛ,0 and Ωm,0 yield this       
angular-diameter distance for an object with z=1090?


ΩΛ,0+Ωm,0 > 1 
κ = +1             

dA too small 

ΩΛ,0+Ωm,0 < 1 
κ = −1             

dA too large 
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95% confidence interval 
for the CMB results:


The combination of SN 
and CMB data leads to 

a flat Benchmark Model.
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Benchmark Model: Ingredients


photons:                                                                       
neutrinos*:                                                                         

total radiation:


baryonic matter:                                                               
(cold) dark matter:                                                            

total matter:


cosmological constant:


Ωγ,0 = 5.35×10-5                                                                     
Ων,0 = 3.65×10-5                                                                        
Ωr,0 = 9.0×10-5 

Ωbary,0 = 0.048                                                               
Ωdm,0 = 0.262                                                          
Ωm,0 = 0.31 

ΩΛ,0 = 1−Ωm,0−Ωr,0 ≈ 0.69 

*assumes massless neutrinos
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No locations are special 
(on scales > 100 Mpc). 
Some times are special.


radiation 

matter 

Λ 

radiation-
matter equality          
arm = Ωr,0/Ωm,0 

= 2.9×10-4 

matter-Λ equality                 
amΛ = (Ωm,0/ΩΛ,0)1/3

 
= 0.766 

a-3 

a-4 
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Benchmark Friedmann equation:

!a
a

⎛
⎝⎜

⎞
⎠⎟

2

= H0
2 Ωr ,0

a4 +
Ωm,0

a3 +ΩΛ,0
⎡
⎣⎢

⎤
⎦⎥

Benchmark age:
t0 = 0.96H0

−1

Benchmark Model: Special Epochs


radiation-matter equality: zrm = 3440,   trm = 50,000 yr 

  matter-lambda equality: zmΛ = 0.31,   tmΛ = 10.4 Gyr  

                                now:    z0 = 0,          t0 = 13.7 Gyr   

However, these aren’t very special (no dramatic changes). 
Today, I’ll discuss the extremely special epochs:


Last Scattering: t ~ 370,000 yr 

Big Bang Nucleosynthesis: t ~ 3 min 
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Simplifying assumption: baryonic content 
at last scattering was pure hydrogen.


Epoch of recombination: when the fractional 
ionization of hydrogen fell to X = 1/2.


Epoch of last scattering: when a typical               
CMB photon last scattered from a free electron.                           
(This happened at X>0, not necessarily at X=1/2.)


X ≡
np

np + nH
=
np
nbary

= ne
nbary

What is X(t)? At 
what value of X does 
last scattering occur? 

1) Last 
Scattering


Fractional ionization of hydrogen is 
determined by the balance between 

photoionization & radiative recombination:


 H + γ ! p + e−

The ionization energy of hydrogen is Q = 13.6 eV          
(T = Q/k = 158,000 K).  

However, I stated that Tls = 2970 K = 0.019 Q/k. 
Why so low?


There are 1.6 billion 
photons per baryon. 
Forget collisional 

ionization! 
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Before last scattering, H, e−, p, and γ 
were in kinetic equilibrium.


 H + γ ! p + e−

The photoionization / radiative recombination 
equation was in a state of chemical equilibrium:


Result: the ionization state was 
given by the Saha equation:


 

nH
npne

= mekT
2π!2

⎛
⎝⎜

⎞
⎠⎟
−3/2

exp Q
kT

⎛
⎝⎜

⎞
⎠⎟

 

1− X
X

= np
mekT
2π!2

⎛
⎝⎜

⎞
⎠⎟
−3/2

exp Q
kT

⎛
⎝⎜

⎞
⎠⎟

In terms of the fractional ionization X,


To get rid of the factor of np, recall that the 
baryon-to-photon ratio η ≈ 6×10-10 is constant. 

 
np = Xnbary = Xηnγ = Xη 2.44 kT

!c
⎛
⎝⎜

⎞
⎠⎟
3⎡

⎣
⎢

⎤

⎦
⎥

1− X
X 2 = 3.84η kT

mec
2

⎛
⎝⎜

⎞
⎠⎟

3/2

exp Q
kT

⎛
⎝⎜

⎞
⎠⎟

Solve for 
X(η,T) 
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X=1/2 when        
Trec = 3760K, 

corresponding to 
zrec = 1380,          

trec = 0.25 Myr. 

(This result is weakly 
dependent on η.)


Assuming η = 6.1×10-10


When does the last scattering of a photon occur?


we find the last scattering occurs at 
zls= 1090, when X ≈ 0.007. 


with the rate of expansion,


H (z) = H0 Ωr ,0 (1+ z)
4 +Ωm,0 (1+ z)

3 +ΩΛ,0⎡⎣ ⎤⎦
1/2

≈ H0Ωm,0
1/2 (1+ z)3/2

By comparing the rate of photon scattering,

Γ(z) = ne(z)σ ec = X(z)(1+ z)

3nbary,0σ ec
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How do we know η so well?


The height of the ‘first peak’ 
in the CMB temperature 

fluctuations is sensitive to 
the baryon-to-photon ratio.


η = (6.10 ± 0.06)×10−10

nbary,0 = 0.251± 0.003m
−3

Ωbary,0 = 0.048 ± 0.003

Early universe (t < trm ≈ 50,000 yr) 
was radiation-dominated.


a(t)∝ t1/2

 
T ∼1010K t

1sec
⎛
⎝⎜

⎞
⎠⎟
−1/2

 
kT ∼1MeV t

1sec
⎛
⎝⎜

⎞
⎠⎟
−1/2

At t < 1 sec, photons were 
energetic enough to 

photodissociate atomic nuclei.
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2) Big Bang 
Nucleosynthesis
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Free neutrons are unstable.


n→ p + e− +νe Qn = mnc
2 −mpc

2 = 1.29MeV

τ n = 880sec

At t < 1 sec, neutrons hadn’t yet decayed.                                       
At t < 1 sec, electrons & positrons were created by pair production:


 γ + γ ! e− + e+

At t < 1 sec, neutrinos were still coupled to baryons:


 n +νe! p + e−

 n + e
+! p +νe

6 4 2 0
0

.2

.4

.6

.8

1

T [1010K]

n n/n
p

freezeout

150 MeV > kT > 0.8 MeV: 

Neutrons and protons are 
in kinetic equilibrium.


nn
np

= mn

mp

⎛

⎝⎜
⎞

⎠⎟

3/2

exp −
(mn −mp )c

2

kT
⎛

⎝⎜
⎞

⎠⎟

≈ exp − Qn

kT
⎛
⎝⎜

⎞
⎠⎟

At kT≈ 0.8 MeV, the neutron-
to-proton ratio “freezes out”:


nn
np

≈ exp −1.29MeV
0.8MeV

⎛
⎝⎜

⎞
⎠⎟
≈ 0.2
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When Big Bang Nucleosynthesis begins, 
there is 1 neutron for every 5 protons.


The essential first step in BBN is the 
creation of a deuteron (2H, or D).


 p + n! D+ γ BD = mpc
2 +mnc

2 −mDc
2 = 2.22MeV

Footnote: The Sun, lacking 
free neutrons, makes 

deuterium the hard way.


p + p→ 2He
2He→ p+ p
2He→ D+e+ +νe

τ ~ 10-23 s 

τ > 10-2 s 

(This corresponds to t ≈ 270 sec.) 

Deuterium synthesis:


Recombination:


 p + n! D+ γ [2,220,000 eV]

 p + e
−! H + γ [13.6 eV]

Rough estimate: If recombination takes place at Trec = 3760K, 
then deuterium synthesis takes place at a temperature 

Tnuc ≈
2,220,000
13.6

⎛
⎝⎜

⎞
⎠⎟ 3760K ≈ 6 ×108K
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Assuming η = 6.1×10-10
 nD=nn when        
Tnuc = 7.6×108K, 
corresponding to 

znuc ≈ 3×108,          
tnuc ≈ 200 sec. 

(This result is weakly 
dependent on η.)


Using the nucleosynthetic equivalent of the Saha 
equation, we find a more accurate value of tnuc.


Deuterium is not the end of the line for BBN.               
The next steps make light helium (3He) and tritium (3H).


 D+ n!3H + γ
 D+ p!3He + γ

The next steps make helium (4He).


3H decays to 3He, but with 
τ = 18 yr >> 3 minutes. 

 
3He + n!4He + γ
 
3H + p!4He + γ

For instance:


For instance:


4He is almost the end of the line for BBN. There are 
no stable nuclei with atomic mass A=5 or A=8.
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Tiny amounts of 6Li are made:


 
4He +D!6Li+ γ

Small amounts of 7Li are made:


 
4He +3H!7Li+ γ

Small amounts of 7Be are made:


 
4He +3He!7Be + γ
(7Be later decays to 7Li 
by electron capture.)


And that’s about it...


The primordial deuterium to 
hydrogen ratio (D/H) is a 

particularly sensitive probe for η.


Deuterium is destroyed in stars. 
Where can we find primordial gas, 

unaltered by star formation?


The yields of different elements depend on η, 
the baryon-to-photon ratio.
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Look for deuterium abundances in               
“metal-poor damped Lyman alpha systems.”


Lyα for H: 121.567 nm 

Lyα for D: 121.534 nm 

Pettini et al. 2012: J1419+0829  

Best fit:                                   
D/H = (2.53±0.04)×10-5, 

yielding η=(6.0±0.1)×10-10 


