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2dF Galaxy Redshift Survey: 
~105 galaxies 

Flatness problem: Space is nearly flat today, 
and was even flatter in the past.


Horizon problem: The universe is nearly 
homogeneous on scales that are not causally 
connected in the standard Big Bang Model.


There are a few unsatisfactory aspects of 
the standard Hot Big Bang model; these 

led to the concept of cosmic inflation.
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You are 
here. 

Combining SNIa, CMB, and 
baryon acoustic oscillations,


1−Ω0 ≤ 0.005

1−Ω(t) = c /H (t)
a(t)R0
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Friedmann equation tells us 


When radiation & matter are 
dominant, |1-Ω| increases with time.


deuterium 
synthesis: 1−Ωnuc ≤10

−15 Planck 
time: 1−ΩP ≤ 2 ×10−62

In the standard Hot Big Bang model   
(no inflation), particle horizon distance 

at the time of last scattering was:


dhor (tls ) = a(tls )c
dt
a(t)0

tls∫
= 2.24ctls = 0.25Mpc

Horizon problem: consider looking 
out at the last scattering surface.
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The angular-diameter distance to 
the last scattering surface is


dA ≈ 10Mpc

The observed angular size of a 
patch dhor = 0.25 Mpc across is


 
θhor =

dhor
dA

≈ 0.25Mpc
10Mpc

≈ 0.025rad ≈1.4!

Without inflation, points more than ~1.4° apart                  
were outside each others’ horizon.                                                        

But... we see they had the same temperature to within ~10-5.


Inflation: during the very early universe,         
there was a temporary era when ä > 0.


Toy model: Exponential expansion began at time ti,       
with Hubble constant Hi ~ (Λi/3)1/2 ~ ti

-1, and ended at tf >ti. 
The energy density of Λi is then transfered to relativistic 

particles in a “reheating” process.   

(Physical mechanisms for inflation 
will be discussed next week...)


ti ~ tGUT ~ 
10-36 sec ? 
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How does inflation solve the flatness problem?


1−Ω(t) = c /H (t)
a(t)R0

⎛
⎝⎜

⎞
⎠⎟

2

1−Ω(t) = c /Hi

aie
Hi (t−ti )R0

⎛
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⎞
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2

∝ e−2Hit

During exponential inflation,


If the universe had |1-Ω|~1 before inflation,               
and if inflation started at ti ~ 10-36 sec, then              

N>60 e-foldings are needed to match today’s flatness.


How does inflation solve the horizon problem?


During exponential inflation, 
the particle horizon size 

grows exponentially.


dhor (t f ) ~ eN 2cti [> 7cm if N>60]

dhor (ti ) ~ 2cti ~ 6 ×10
−28m

dhor (tls ) =
a(tls )
a(t f )

dhor (t f ) [>1Mpc if N>60]

N>63 e-foldings ensure the last scattering surface is isotropic.
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Inflation, by increasing the particle horizon size, 
prevents the CMB from having large   
temperature fluctuations (δT/T ~ 1).


Inflation, by inflating quantum perturbations to 
macroscopic scales, also causes the observed 

small temperature fluctuations (δT/T ~ 10-5).


Quantum perturbations in the “inflaton” field                                                                
è small variations δN in the e-foldings of inflation                 
è slight differences in the time of reheating                                  
è small fluctuations in the post-inflation density ε 

When dark matter decouples from other 
components of the universe (t ~ 1 sec for WIMPs),   

it has low-amplitude density fluctuations:


 ρ(
!r ,t) = ρ(t) 1+δ (!r ,t)[ ]

spatially averaged density fluctuation: 
initially |δ| << 1 

We expect that the density field δ resulting from 
inflation will be a Gaussian random field.


p(δ )∝ exp − δ 2

2σ 2

⎛
⎝⎜

⎞
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Take the Fourier transform of δ: 

 
δ !k =

1
V

δ (!r )∫ ei
!
k ⋅!rd 3r

V (t)∝ a(t)3

comoving 
box


Each Fourier component can be written as


 
δ !k = δ !k e

iϕ !k

If δ(r) is a Gaussian random field, then the phases φk 
are uncorrelated, and all useful information is in the 

power spectrum


 
P(k) = δ !k

2

Prediction: inflationary density perturbations 
should have a power spectrum


P(k)∝ kn

with n ≈ 1. (If n = 1 exactly, this is called 
a Harrison-Zel’dovich spectrum.)


Observable consequences: spheres of mean mass M have


δM /M ∝M −(3+n)/6

δφ ∝δM / r ∝M (1−n)/6
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Planck: n = 0.97±0.01 
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The initial P ~ k0.97 spectrum is modified on small 
scales during the era of radiation domination.


When the physical size of a perturbation, λ~a(t)2π/k, 
is larger than the Hubble distance, c/H(t)~2ct,            

its amplitude grows. Why?


Wave crests are out of contact with troughs:      
crests act like a patch of an Ω>1 universe,      

troughs act like a patch of an Ω<1 universe. 

λ ∝ a(t)∝ t1/2 c /H (t)∝ t
Eventually, λ is overtaken by c/H, and the 
amplitude of the perturbation freezes out.
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Suppression of power is 
greatest on small length scales 
(large comoving wavenumber).


δM/M is largest on small 
length scales (“bottom up” 

structure formation).
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During the matter-dominated era, density fluctuations 
in dark matter evolve by gravitational instability:                

“The rich get richer, the poor get poorer.”


[Evolution of baryonic fluctuations is more complicated, 
because of interactions with photons.]


Simplest case of gravitational instability:                    
low-amplitude density fluctuations in completely 

pressureless, completely dark matter.


Applying linear perturbation theory (|δ|<<1) to the 
acceleration equation, we find [for λ<c/H(t)]:


 
!!δ = 4πGρδ (t)

Static universe (H = 0, constant mean density):


 
!!δ + 2H (t) !δ = 4πGρ(t)δ (t)

Well-known solution: exponential growth (or decay)


δ (t) = A1e
t /tdyn + A2e

− t /tdyn ,
where  tdyn = (4πGρ )−1/2

Applies even when 
universe is not 

matter-dominated. 
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!!δ + 2H (t) !δ = 4πGρ(t)δ (t)

Growth of density 
perturbations:


Hubble expansion
 Self-gravity

Self-gravity increases 

density on a time scale 
tdyn~(Gρ)-1/2 

Hubble expansion decreases 
density on a time scale                     

1/H(t)~(Gε/c2)-1/2 

If matter is not dominant, ρ<<ε/c2, tdyn>> 1/H, 
and perturbations grow extremely slowly.


If matter is dominant, ρ≈ε/c2, tdyn~ 1/H, and perturbations 
grow as a power law (not exponentially).


A flat, matter-dominated universe: Ωm=1, H(t) = (2/3)t-1 

 
!!δ + 4

3t
!δ = 2

3t 2
δ

Power-law solutions (verify by substitution!)


δ = C1t
2/3 +C2t

−1

When only the growing mode remains,


δ ∝ t 2/3 ∝ a(t)∝ (1+ z)−1

Maximum growth:

δmΛ

δ rm

≈ 1+ zrm
1+ zmΛ

≈ 3440
1.31

≈ 2600
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A region of space with δrm < 1/2600 ~ 4×10-4  at 
radiation-matter equality never reaches δ ~ 1,      

the overdensity at which collapse begins.  


We are entering the Λ-dominated era: 
the biggest collapsing objects that   
we see today (superclusters) are      

the biggest there will ever be. 


On small scales,  
today’s universe is very 

inhomogeneous.


Baryonic matter can reach 
very high densities because 
it can radiate away excess 

thermal energy.


δ~1028 δ~1022 

δ ~10 δ~0 
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Baryonic matter today:
 Bound baryons


Diffuse intergalactic gas: 
δbary≤0, T<105K, ionized 

Warm-hot intergalactic gas: 
δbary~30, T~106K, ionized 

Although baryons can make very 
dense objects, most baryons don’t.


The baryons are ionized again! 
How did that happen?


The baryons are ionized again! 
When did that happen?


Recombination occurred at trec ~ 0.25 Myr.


The time of reionization can be 
deduced from looking at the CMB.


Ionized intergalactic gas provides a 
foreground screen of free electrons 

that can scatter CMB photons.
 Slightly 
translucent
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Because of the translucent foreground 
material, our view of the last scattering 

surface is slightly blurred.


The most recent analysis of the Planck results 
(Aghanim et al., arXiv:1605.02985) yields


τ=0.055±0.009 

(That is, about 1 in 18 CMB photons has scattered.)


The rate at which a CMB photon scatters 
from free electrons in reionized gas:


Γ(t) = ne(t)σ ec

If the baryonic gas is reionized starting at a time tR, 
then the optical depth of the reionized gas is:


τ = Γ(t)dt
tR

t0∫ =σ ec ne(t)dttR

t0∫
Simplifying assumptions: pure hydrogen 

undergoes instant total reionization at t=tR. 
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With these assumptions, at t > tR we find  

ne = np =
nbary,0
a(t)3

The optical depth is then


τ = Γ0
dt
a(t)3tR

t0∫
where Γ0 =σ ecnbary,0 = 1.6 ×10−4 Gyr−1 ≈ 0.002H0

There’s an analytic solution!


τ = 2
3Ωm,0

Γ0

H0

Ωm,0 (1+ zR )
3 +ΩΛ,0⎡⎣ ⎤⎦

1/2
−1( )

Using H0 = 68 km s-1 Mpc-1, ΩΛ,0=0.69, Ωm,0=0.31, and 
τ=0.055±0.009, 


zR = 6.9 ± 0.8

we find that reionization took place at a redshift 


The “era of neutrality” was a brief interlude in 
the history of the universe: tR-trec~0.05t0


(tR ≈ 0.65 Gyr) 

So... what happened around z~7 that 
could have reionized the universe?
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Hint: the highest redshift galaxies 
known are at z > 7.


Galaxies contain two sources of ionizing photons: 
hot stars and active galactic nuclei (AGN).


Intergalactic gas was photoionized.


z = 8.68;   a(te) = 1/(1+z) = 0.103 

(comoving) number density 
of quasars (= luminous AGN)
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Probably too few AGN 
at z>7 to do the job.


Probably (maybe?) 
enough hot stars.
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Reionization: much work remains to be done.


Cosmology in general: much work remains to be done.



