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1.1 — GWs in a nutshell



Gravitational waves are propagating ripples in spacetime,  
produced by the rapid accelerated motion of massive bodies.



GWs will open many 
new windows... 



...on the most dramatic 
events in the Universe, 

the most luminous objects, 
the most extreme conditions.



Gravitational waves: 
• are emitted by the bulk 

motion of accelerating 
masses 

• have typical strength 10–21 
• interact weakly with matter 
• are phase coherent 
• are measured by 

omnidirectional detectors 
• do not form images



GWs are detected 
across the frequency spectrum 
as transverse oscillations 
in the distance of test masses. 



GW150914: the GW era is now

[see this movie at https://youtu.be/QyDcTbR-kEA]

https://youtu.be/QyDcTbR-kEA


1.2 — sources



Gravitational-wave detectors

102110–210–410–610–810–1010–1210–1410–16

LIGOLISA-likepulsar timingCMB future space

Hz

early-Universe quantum fluctuations

massive black-hole binaries
captures into MBHs merging NS, BH

rotating NSGalactic binaries

The GW spectrum



• black holes are pure vacuum (and hairless) GR solutions 
• they are the endpoint of evolution for massive stars 
• stellar-mass black holes are observed in x-ray binaries 
• supermassive black holes are inferred at the centers of 

galaxies



• black-hole binary mergers are non-luminous (in EM!) 
• they yield black-hole parameters to constrain population models  
• they probe the dynamical, strong-field sector of gravitation  
• they are the most luminous transient events in the Universe

[see this movie at https://youtu.be/I_88S8DWbcU]

https://youtu.be/I_88S8DWbcU


• rapidly pulsating radio sources were identified with neutron stars 
• decreasing orbital period of Hulse-Taylor binary pulsar provided 

indirect proof of GW emission 
• binary pulsars allow precision tests of GR dynamics

See this movie 
at http://www.astron.nl/pulsars/animations/



• neutron-star binary mergers: well-modeled inspiral, hydro-influenced 
late-inspiral/merger 

• possible engine for short gamma-ray bursts; coincident observations 
will confirm

See this movie at https://youtu.be/vw2sLcyV7Vc

https://youtu.be/vw2sLcyV7Vc
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with specific stellar populations). Because merger counterparts
are predicted to be faint, obtaining a spectroscopic redshift
is challenging (cf. Rowlinson et al. 2010), in which case
spectroscopy of the host galaxy is the most promising means
of obtaining the event redshift.

It is important to distinguish two general strategies for con-
necting EM and GW events. One approach is to search for a
GW signal following an EM trigger, either in real time or at
a post-processing stage (e.g., Finn et al. 1999; Mohanty et al.
2004). This is particularly promising for counterparts predicted
to occur in temporal coincidence with the GW chirp, such as
short-duration gamma-ray bursts (SGRBs). Unfortunately, most
other promising counterparts (none of which have yet been
independently identified) occur hours to months after coales-
cence.6 Thus, the predicted arrival time of the GW signal will
remain uncertain, in which case the additional sensitivity gained
from this information is significantly reduced. For instance, if
the time of merger is known only to within an uncertainty of
∼ hours (weeks), as we will show is the case for optical (radio)
counterparts, then the number of trial GW templates that must
be searched is larger by a factor ∼104–106 than if the merger
time is known to within seconds, as in the case of SGRBs.

A second approach, which is the primary focus of this paper,
is EM follow-up of GW triggers. A potential advantage in this
case is that counterpart searches are restricted to the nearby
universe, as determined by the ALIGO/Virgo sensitivity range
(redshift z ! 0.05–0.1). On the other hand, the large error
regions are a significant challenge, which are estimated to be
tens of square degrees even for optimistic configurations of GW
detectors (e.g., Gürsel & Tinto 1989; Fairhurst 2009; Wen &
Chen 2010; Nissanke et al. 2011). Although it has been argued
that this difficulty may be alleviated if the search is restricted
to galaxies within 200 Mpc (Nuttall & Sutton 2010), we stress
that the number of galaxies with L " 0.1 L∗ (typical of SGRB
host galaxies; Berger 2009, 2011) within an expected GW error
region is ∼400, large enough to negate this advantage for most
search strategies. In principle the number of candidate galaxies
could be reduced if the distance can be constrained from the
GW signal; however, distance estimates for individual events
are rather uncertain, especially at that low of S/Ns that will
characterize most detections (Nissanke et al. 2010). Moreover,
current galaxy catalogs are incomplete within the ALIGO/Virgo
volume, especially at lower luminosities. Finally, some mergers
may also occur outside of their host galaxies (Berger 2010;
Kelley et al. 2010). Although restricting counterpart searches to
nearby galaxies is unlikely to reduce the number of telescope
pointings necessary in follow-up searches, it nevertheless can
substantially reduce the effective sky region to be searched,
thereby allowing for more effective vetoes of false positive
events (Kulkarni & Kasliwal 2009).

At the present there are no optical or radio facilities that can
provide all-sky coverage at a cadence and depth matched to
the expected light curves of EM counterparts. As we show in
this paper, even the Large Synoptic Survey Telescope (LSST),
with a planned all-sky cadence of four days and a depth of
r ≈ 24.7 mag, is unlikely to effectively capture the range of
expected EM counterparts. Thus, targeted follow-up of GW

6 Predicted EM counterparts that may instead precede the GW signal include
emission powered by the magnetosphere of the NS (e.g., Hansen & Lyutikov
2001; McWilliams & Levin 2011; Lyutikov 2011a, 2011b), or cracking of the
NS crust due to tidal interactions (e.g., Troja et al. 2010; Tsang et al. 2011),
during the final inspiral. However, given the current uncertainties in these
models, we do not discuss them further.
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Figure 1. Summary of potential electromagnetic counterparts of NS–NS/
NS–BH mergers discussed in this paper, as a function of the observer angle,
θobs. Following the merger a centrifugally supported disk (blue) remains around
the central compact object (usually a BH). Rapid accretion lasting !1 s
powers a collimated relativistic jet, which produces a short-duration gamma-
ray burst (Section 2). Due to relativistic beaming, the gamma-ray emission
is restricted to observers with θobs ! θj , the half-opening angle of the jet.
Non-thermal afterglow emission results from the interaction of the jet with
the surrounding circumburst medium (pink). Optical afterglow emission is
observable on timescales up to ∼ days–weeks by observers with viewing angles
of θobs ! 2θj (Section 3.1). Radio afterglow emission is observable from all
viewing angles (isotropic) once the jet decelerates to mildly relativistic speeds
on a timescale of weeks–months, and can also be produced on timescales of
years from sub-relativistic ejecta (Section 3.2). Short-lived isotropic optical
emission lasting ∼few days (kilonova; yellow) can also accompany the merger,
powered by the radioactive decay of heavy elements synthesized in the ejecta
(Section 4).
(A color version of this figure is available in the online journal.)

error regions is required, whether the aim is to detect optical
or radio counterparts. Even with this approach, the follow-
up observations will still require large field-of-view (FOV)
telescopes to cover tens of square degrees; targeted observations
of galaxies are unlikely to substantially reduce the large amount
of time to scan the full error region.

Our investigation of EM counterparts is organized as follows.
We begin by comparing various types of EM counterparts, each
illustrated by the schematic diagram in Figure 1. The first is an
SGRB, powered by accretion following the merger (Section 2).
Even if no SGRB is produced or detected, the merger may still
be accompanied by relativistic ejecta, which will power non-
thermal afterglow emission as it interacts with the surrounding
medium. In Section 3 we explore the properties of such “or-
phan afterglows” from bursts with jets nearly aligned toward
Earth (optical afterglows; Section 3.1) and for larger viewing
angles (late radio afterglows; Section 3.2). We constrain our
models using the existing observations of SGRB afterglows,
coupled with off-axis afterglow models. We also provide a re-
alistic assessment of the required observing time and achiev-
able depths in the optical and radio bands. In Section 4 we
consider isotropic optical transients powered by the radioac-
tive decay of heavy elements synthesized in the ejecta (referred
to here as “kilonovae,” since their peak luminosities are pre-
dicted to be roughly one thousand times brighter than those
of standard novae). In Section 5 we compare and contrast the
potential counterparts in the context of our four Cardinal Virtues.
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detectable? timescale contamination detectors

SGRBs beamed, few/year seconds low Swift/Fermi

orphan afterglows beamed, 10% depends on angle high LSST

radio isotropic, weak months-years low wide-field LF 
higher-sensitivity HF

kilonovae isotropic, weak hours-days high transient factories, IR? 
> 6m spectroscopy 

a zoo of counterparts 
(Metzger & Berger 2011)



neutron stars are unique laboratories for nuclear physics: 
NS–NS and NS–BH GWs constrain their EOS

J.M. Lattimer, M. Prakash / Physics Reports 442 (2007) 109–165 117

Fig. 2. Mass-radius trajectories for typical EOSs (see [6] for notation) are shown as black curves. Green curves (SQM1, SQM3) are self-bound quark

stars. Orange lines are contours of radiation radius, R∞ =R/

√
1 − 2GM/Rc2. The dark blue region is excluded by the GR constraint R > 2GM/c2,

the light blue region is excluded by the finite pressure constraint R > (9/4)GM/c2, and the green region is excluded by causality, R > 2.9GM/c2.
The light green region shows the region R > Rmax excluded by the 716 Hz pulsar J1748-2446ad [22] using Eq. (12). The upper red dashed curve is
the corresponding rotational limit for the 1122 Hz X-ray source XTE J1739-285 [23]; the lower blue dashed curve is the rogorous causal limit using
the coefficient 0.74 ms in Eq. (12).

3. Recent mass measurements and their implications

Several recent observations of neutron stars have direct bearing on the determination of the maximum mass. The
most accurately measured masses are from timing observations of the radio binary pulsars. As shown in Fig. 3, which is
compilation of the measured neutron star masses as of November 2006, observations include pulsars orbiting another
neutron star, a white dwarf or a main-sequence star. The compact nature of several binary pulsars permits detection of
relativistic effects, such as Shapiro delay or orbit shrinkage due to gravitational radiation reaction, which constrains
the inclination angle and allows the measurement of each mass in the binary. A sufficiently well-observed system can
have masses determined to impressive accuracy. The textbook case is the binary pulsar PSR 1913 + 16, in which the
masses are 1.3867 ± 0.0002 and 1.4414 ± 0.0002 M⊙, respectively [40].

One significant development concerns mass determinations in binaries with white dwarf companions, which show
a broader range of neutron star masses than binary neutron star pulsars. Perhaps a rather narrow set of evolutionary
circumstances conspire to form double neutron star binaries, leading to a restricted range of neutron star masses [53].
This restriction is likely relaxed for other neutron star binaries. Evidence is accumulating that a few of the white dwarf
binaries may contain neutron stars larger than the canonical 1.4 M⊙ value, including the intriguing case [45] of PSR
J0751 + 1807 in which the estimated mass with 1! error bars is 2.1 ± 0.2 M⊙. In addition, to 95% confidence, one of
the two pulsars Ter 5 I and J has a reported mass larger than 1.68 M⊙ [43].

Whereas the observed simple mean mass of neutron stars with white dwarf companions exceeds those with neutron
star companions by 0.25 M⊙, the weighted means of the two groups are virtually the same. The 2.1 M⊙ neutron star,
PSR J0751 + 1807, is about 4! from the canonical value of 1.4 M⊙. It is furthermore the case that the 2! errors of
all but two systems extend into the range below 1.45 M⊙, so caution should be exercised before concluding that firm
evidence of large neutron star masses exists. Continued observations, which will reduce the observational errors, are
necessary to clarify this situation.

Masses can also be estimated for another handful of binaries which contain an accreting neutron star emitting X-rays,
as shown in Fig. 3. Some of these systems are characterized by relatively large masses, but the estimated errors are also
large. The system of Vela X-1 is noteworthy because its lower mass limit (1.6–1.7 M⊙) is at least mildly constrained
by geometry [26].

Raising the limit for the neutron star maximum mass could eliminate entire families of EOSs, especially those in
which substantial softening begins around 2 to 3ns . This could be extremely significant, since exotica (hyperons, Bose
condensates, or quarks) generally reduce the maximum mass appreciably.

[Lattimer & Prakash 2007]
• NS maximum mass and radii are 

poorly known 
• maximum mass: EOS stiffness 

at supernuclear densities 
• radius: EOS at nuclear densities 

(esp. symmetry energy) 

• NS–NS GWs: EOS influences 
tidal deformations in late inspiral, 
sudden/delayed collapse 

• NS–BH GWs: EOS influences 
NS tidal disruption [MV 2000]
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Figure 5. Solid lines show numerical waveforms, scaled by c2D/GMtot, and aligned in time and phase
to the same point-particle post-Newtonian inspiral (dashed line), using a method described in [56]. The
two dashed vertical bars indicate the portion of the waveform used for matching; the last vertical bar
indicates the end of inspiral time tM for the numerical waveform. The top two simulations, 2H and HB,
show the start of post-merger oscillations from a hypermassive neutron star remnant in the simulation.
2B shows quasinormal ringdown from a prompt collapse to a black hole following merger. Reproduced
with permission from [56] c⇥(2009) by the American Physical Society.

waveforms depart from this waveform 4–8 cycles (200–560 Mtot) before the best-fit PP merger, due to
finite size effects.

The TaylorT4 waveform is constructed by numerically integrating to obtain a gauge invariant post-
Newtonian parameter related to the orbital frequency observed at infinity ⇥ [56]. The orbital frequency
evolution ⇥(t) and orbital phase evolution �(t) are computed to 3.5 post-Newtonian order following
[47]. For the numerical integration, one needs to specify the constants of integration by fixing
coalescence time tPP

c and the orbital phase at this time �(tPP
c ) = �PP

c . These two parameters uniquely
specify the 3PN waveform for given particle masses. The amplitude of the (l = 2,m = ±2) quadrupole
waveform is then calculated to 3.0 post-Newtonian order as described in [49, 56].

To match the numerical data to the PP inspiral waveform, the two parameters, tPP
c and �PP

c are varied
and the best match is obtained [56], to fix a relative time shift and a relative phase shift. The masses
of the point particles in the PP waveform are fixed to be the same as the neutron stars in the numerical
simulations (the gravitational mass of isolated spherical neutron stars with the same number of baryons)
and so masses are not varied in finding the best match. With a goal of signal analysis, we choose the
time and phase shift by maximizing a correlation-based match between two waveforms. More details on
the matching technique may be found in [56]. We note, however, that longer simulations are required to
more precisely fix a post-Newtonian match.
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two dashed vertical bars indicate the portion of the waveform used for matching; the last vertical bar
indicates the end of inspiral time tM for the numerical waveform. The top two simulations, 2H and HB,
show the start of post-merger oscillations from a hypermassive neutron star remnant in the simulation.
2B shows quasinormal ringdown from a prompt collapse to a black hole following merger. Reproduced
with permission from [56] c⇥(2009) by the American Physical Society.

waveforms depart from this waveform 4–8 cycles (200–560 Mtot) before the best-fit PP merger, due to
finite size effects.

The TaylorT4 waveform is constructed by numerically integrating to obtain a gauge invariant post-
Newtonian parameter related to the orbital frequency observed at infinity ⇥ [56]. The orbital frequency
evolution ⇥(t) and orbital phase evolution �(t) are computed to 3.5 post-Newtonian order following
[47]. For the numerical integration, one needs to specify the constants of integration by fixing
coalescence time tPP

c and the orbital phase at this time �(tPP
c ) = �PP

c . These two parameters uniquely
specify the 3PN waveform for given particle masses. The amplitude of the (l = 2,m = ±2) quadrupole
waveform is then calculated to 3.0 post-Newtonian order as described in [49, 56].

To match the numerical data to the PP inspiral waveform, the two parameters, tPP
c and �PP

c are varied
and the best match is obtained [56], to fix a relative time shift and a relative phase shift. The masses
of the point particles in the PP waveform are fixed to be the same as the neutron stars in the numerical
simulations (the gravitational mass of isolated spherical neutron stars with the same number of baryons)
and so masses are not varied in finding the best match. With a goal of signal analysis, we choose the
time and phase shift by maximizing a correlation-based match between two waveforms. More details on
the matching technique may be found in [56]. We note, however, that longer simulations are required to
more precisely fix a post-Newtonian match.

Shibata group

in the late NS–NS inspiral, companions raise 
quadrupolar tides; inspiral is faster for stiffer EOS

2

dynamics effects play a crucial role for the evolution of
NS-NS binaries [25]. In addition, higher-PN tidal correc-
tions may yield a pole-like behavior of the tidal interac-
tions near the last unstable orbit [26].
For better understanding the precise motion and the

waveform in this late inspiral stage, a numerical-relativity
(NR) simulation is probably the best approach (see, e.g.,
Refs. [27–29] for a review of this field). Recently, long-
term simulations for NS-NS inspirals were performed by
three groups [30–32] aiming at the derivation of accu-
rate gravitational waveforms for the late inspiral stage.
Baiotti and his collaborators performed a NR simula-
tion employing a Γ-law EOS and compared the resulting
waveforms of the highest resolution simulation with the
analytic models calculated in the EOB and Taylor T4
formalisms [30, 33]. They suggested that the tidal ef-
fects might be significantly amplified by higher-PN tidal
corrections even in the early inspiral phase.
Bernuzzi and his collaborators performed a simulation

with Γ-law EOS (Γ = 2, and the compactness of a neu-
tron star is 0.14) [34, 35]. In Ref. [34], they studied the
convergence of the numerical results for NS-NS inspirals.
They concluded that the convergence of the simulation
is second order up to contact. They also compared the
resulting extrapolated waveform with that of the Taylor
T4 formalism for the point-particle approximation and
for including the tidal corrections. They found that the
accumulated phase difference is about 1.5 radian at con-
tact for a particular model of the NS-NS binary. In the
subsequent paper [35], they compared the waveform de-
rived by the highest resolution simulation with the wave-
form calculated in the EOB formalism. They found that
the EOB formalism including tidal corrections up to the
next-to-next-to leading order is currently the most ro-
bust way to describe the waveform of NS-NS inspirals.
In addition, they excluded the huge amplification of the
tidal corrections suggested in Ref. [30].
In this paper, we study NS-NS inspirals by NR sim-

ulations with three different EOSs and compare the ex-
trapolated NR waveforms with those calculated in the
EOB and Taylor T4 formalisms. Here we extrapolate
NR data with a new extrapolation procedure, the time
and phase extrapolation. For studying the dependence of
the tidal effects on the neutron-star matter EOS, we em-
ploy a piecewise-polytropic EOS of Ref. [36], which can
approximately describe the EOS based on nuclear the-
oretical calculations and more realistic than Γ-law EOS
adopted in Refs.[30, 34, 35]. In this paper, (i) we obtain
the physical gravitational-wave phase by extrapolation;
(ii) we then compare the extrapolated waveforms with
those of the analytic models calculated in the Taylor T4
and EOB formalisms; (iii) we clarify the tidal effects on
the gravitational-wave phase and show the validity of the
analytic modeling in the late inspiral phase.
The paper is organized as follows. In Sec. II, we briefly

review the analytic modeling of gravitational waves emit-
ted from a tidally interacting binary system. In Sec. III,
we summarize the formulation and numerical schemes

employed in our numerical code SACRA, and review the
EOS employed in this study. In Sec. IV, we describe our
method of data analysis of the numerical waveforms; the
radius extrapolation and the resolution extrapolation. In
Sec. V, we compare the extrapolated gravitational-wave
phase with those derived in the analytic modeling. Sec-
tion VI is devoted to a summary. Throughout this paper,
we adopt the geometrical units of c = G = 1 where c and
G are the speed of light the gravitational constant re-
spectively.

II. TIDAL EFFECTS IN A BINARY SYSTEM

In this section, we describe analytic models for the
calculation of gravitational waves emitted from NS-NS
inspirals in close orbits. We briefly summarize the def-
inition of the tidal deformability of a neutron star, and
the PN and EOB descriptions of the tidally-interacting
dynamics of close NS-NS binaries.

A. Tidal deformability of a neutron star

In a close binary system for which the separation be-
tween two stars is a few times larger than the stellar ra-
dius, each star is deformed from its hypothetical equilib-
rium shape in isolation due to the tidal fields. Assuming
that neutron stars are spherically symmetric in the zeroth
order, such deformation can be described as the linear re-
sponses of neutron stars to external tidal fields [37–39],
as long as the degree of the tidal deformation is small. In
this linear theory, one assumes that the mass quadrupole
moment of a star, Qij , is proportional to the external
quadrupolar tidal fields Eij as,

Qij = −λEij , (1)

where λ is the quadrupolar tidal deformability of the star.
This relation is called the adiabatic approximation for the
tidal deformation of a star, which is valid only when the
time scale in the change of the weak tidal field is much
longer than the dynamical time scale of the star. The
tidal deformability is related to the quadrupolar tidal
Love number k2 by

λ =
2

3
R5k2, (2)

where R is the radius of the (spherical) star in isolation.
For a given EOS and a central density, one can calculate
the quantities mass, R, k2, and λ of neutron stars by
solving the Tolman-Oppenheimer-Volkoff equations and
the metric perturbation equations [37, 38].

B. The post-Newtonian description for the motion
of a tidally interacting binary

The motion of tidally interacting NS-NS binaries in
close orbits is affected by the stellar internal structure.
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dynamics effects play a crucial role for the evolution of
NS-NS binaries [25]. In addition, higher-PN tidal correc-
tions may yield a pole-like behavior of the tidal interac-
tions near the last unstable orbit [26].
For better understanding the precise motion and the

waveform in this late inspiral stage, a numerical-relativity
(NR) simulation is probably the best approach (see, e.g.,
Refs. [27–29] for a review of this field). Recently, long-
term simulations for NS-NS inspirals were performed by
three groups [30–32] aiming at the derivation of accu-
rate gravitational waveforms for the late inspiral stage.
Baiotti and his collaborators performed a NR simula-
tion employing a Γ-law EOS and compared the resulting
waveforms of the highest resolution simulation with the
analytic models calculated in the EOB and Taylor T4
formalisms [30, 33]. They suggested that the tidal ef-
fects might be significantly amplified by higher-PN tidal
corrections even in the early inspiral phase.
Bernuzzi and his collaborators performed a simulation

with Γ-law EOS (Γ = 2, and the compactness of a neu-
tron star is 0.14) [34, 35]. In Ref. [34], they studied the
convergence of the numerical results for NS-NS inspirals.
They concluded that the convergence of the simulation
is second order up to contact. They also compared the
resulting extrapolated waveform with that of the Taylor
T4 formalism for the point-particle approximation and
for including the tidal corrections. They found that the
accumulated phase difference is about 1.5 radian at con-
tact for a particular model of the NS-NS binary. In the
subsequent paper [35], they compared the waveform de-
rived by the highest resolution simulation with the wave-
form calculated in the EOB formalism. They found that
the EOB formalism including tidal corrections up to the
next-to-next-to leading order is currently the most ro-
bust way to describe the waveform of NS-NS inspirals.
In addition, they excluded the huge amplification of the
tidal corrections suggested in Ref. [30].
In this paper, we study NS-NS inspirals by NR sim-

ulations with three different EOSs and compare the ex-
trapolated NR waveforms with those calculated in the
EOB and Taylor T4 formalisms. Here we extrapolate
NR data with a new extrapolation procedure, the time
and phase extrapolation. For studying the dependence of
the tidal effects on the neutron-star matter EOS, we em-
ploy a piecewise-polytropic EOS of Ref. [36], which can
approximately describe the EOS based on nuclear the-
oretical calculations and more realistic than Γ-law EOS
adopted in Refs.[30, 34, 35]. In this paper, (i) we obtain
the physical gravitational-wave phase by extrapolation;
(ii) we then compare the extrapolated waveforms with
those of the analytic models calculated in the Taylor T4
and EOB formalisms; (iii) we clarify the tidal effects on
the gravitational-wave phase and show the validity of the
analytic modeling in the late inspiral phase.
The paper is organized as follows. In Sec. II, we briefly

review the analytic modeling of gravitational waves emit-
ted from a tidally interacting binary system. In Sec. III,
we summarize the formulation and numerical schemes

employed in our numerical code SACRA, and review the
EOS employed in this study. In Sec. IV, we describe our
method of data analysis of the numerical waveforms; the
radius extrapolation and the resolution extrapolation. In
Sec. V, we compare the extrapolated gravitational-wave
phase with those derived in the analytic modeling. Sec-
tion VI is devoted to a summary. Throughout this paper,
we adopt the geometrical units of c = G = 1 where c and
G are the speed of light the gravitational constant re-
spectively.

II. TIDAL EFFECTS IN A BINARY SYSTEM

In this section, we describe analytic models for the
calculation of gravitational waves emitted from NS-NS
inspirals in close orbits. We briefly summarize the def-
inition of the tidal deformability of a neutron star, and
the PN and EOB descriptions of the tidally-interacting
dynamics of close NS-NS binaries.

A. Tidal deformability of a neutron star

In a close binary system for which the separation be-
tween two stars is a few times larger than the stellar ra-
dius, each star is deformed from its hypothetical equilib-
rium shape in isolation due to the tidal fields. Assuming
that neutron stars are spherically symmetric in the zeroth
order, such deformation can be described as the linear re-
sponses of neutron stars to external tidal fields [37–39],
as long as the degree of the tidal deformation is small. In
this linear theory, one assumes that the mass quadrupole
moment of a star, Qij , is proportional to the external
quadrupolar tidal fields Eij as,

Qij = −λEij , (1)

where λ is the quadrupolar tidal deformability of the star.
This relation is called the adiabatic approximation for the
tidal deformation of a star, which is valid only when the
time scale in the change of the weak tidal field is much
longer than the dynamical time scale of the star. The
tidal deformability is related to the quadrupolar tidal
Love number k2 by

λ =
2

3
R5k2, (2)

where R is the radius of the (spherical) star in isolation.
For a given EOS and a central density, one can calculate
the quantities mass, R, k2, and λ of neutron stars by
solving the Tolman-Oppenheimer-Volkoff equations and
the metric perturbation equations [37, 38].

B. The post-Newtonian description for the motion
of a tidally interacting binary

The motion of tidally interacting NS-NS binaries in
close orbits is affected by the stellar internal structure.

Lackey et al. 2011

: stiff

: soft



in late NS/BH inspiral, larger NS are tidally disrupted, reducing the 
GW amplitude sharply before merger and suppressing ringdown
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FIG. 2: h+ and |h| = |h+ � ih�| for BHNS waveforms for (Q = 2,MNS = 1.35 M⇥) with two di⇥erent EOS are represented
by solid red and blue curves respectively. The softest EOS p.3�2.4 is on top and the sti⇥est EOS p.9�3.0 is on bottom. An
EOB BBH waveform (dashed) with the same values of Q and MNS is matched to each numerical waveform within the matching
window TI < t < TF bounded by solid vertical lines. A hybrid EOB BBH–Numerical BHNS waveform is generated by splicing
the waveforms together within a splicing window SI < t < SF bounded by dotted vertical lines. The matching window is 12 ms
long and ends at the numerical merger time tNR

M (time when the numerical waveform reaches its maximum amplitude), while
the splicing window is 4 ms long and begins at the start of the matching window (SI = TI).

of EOS parameters since the EOS dependence is coming
solely from the numerical waveforms.

A. Matching procedure

We use a method similar to that described by Read
et al. [12] to join each of the numerical BHNS wave-
forms to a reference EOB waveform, generating a hy-
brid EOB–numerical waveform. Denote a complex nu-
merical waveform by hNR(t) = hNR

+ (t) � ihNR
⇥ (t) and an

EOB waveform with the same Q and MNS by hEOB(t) =
hEOB
+ (t)� ihEOB

⇥ (t). A constant time-shift ⇥ and phase-
shift � can be applied to the EOB waveform to match
it to a section of the numerical waveform by rewriting
it as hEOB(t � ⇥)e�i�. We hold the numerical wave-
form fixed because we must specify a matching window
TI < t < TF , and as discussed below, there is only a
small region of the numerical waveforms over which a
valid match can be performed. Once the values of ⇥
and � are determined, we will then choose to instead

hold the EOB waveform fixed and shift the numerical
waveform in the opposite direction by rewriting it as
hshift
NR (t) = hNR(t + ⇥)e+i�. This is done so that all of

the numerical waveforms with the same Q and MNS are
aligned relative to a single fixed reference EOB waveform.
Over a matching window TI < t < TF (bounded by

solid vertical lines in Fig. 2), the normalized match be-
tween the waveforms is defined as

m(⇥,�) =
Re

�
z(⇥)ei�

⇥

�NR�EOB(⇥)
, (11)

where

z(⇥) =

⇤ TF

TI

hNR(t)h
⇤
EOB(t� ⇥) dt (12)

and the normalizations for each waveform in the denom-
enator are defined as

�2
NR =

⇤ TF

TI

|hNR(t)|2 dt (13)

[Lackey et al. 2011] [Caltech/CITA/Cornell group 2012]

• NS radius can be extracted as well as 10% in aLIGO, a precision 
comparable to X-ray–burst measurements, but with very different physics 

• significant modeling improvements are still needed



GW science in a nutshell: what’s in a binary waveform?

equal-mass BBH Inspiral: 
PN equations

merger: 
numerical 
relativity

ringdown: 
perturbation 
theory
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HF GWs: stellar masses LF GWs: massive BHs,  
large separations

astrophysics populations and histories 
of compact objects; 
SN and GRB progenitors*

massive-BH origin and 
evolution; Galactic WD-binary 
populations and  interactions

nuclear physics NS EOS, r-mode processes*
cosmology standard sirens*
fundamental gravity strong-field and radiation-sector dynamics
black-hole structure tests of no-hair theorem 

with EMRIs, ringdowns
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1.3 — detection



Joseph Weber, 1919-2000



Gravitational wave Gravitational-wave  
detector



Gravitational-wave detector
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Doppler tracking, 
eLISA, LIGOpulsar timing



Gravitational-wave detector sensitivity
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Universal: “it must get better before it gets worse”

measurement 
is imprecise

references 
are not ideal



Gravitational-wave detector sensitivity

Ground-based interferometers
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Gravitational-wave detector sensitivity

Space-based interferometers
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Gravitational-wave detector sensitivity
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Pulsar timing

white pulse timing noise, 
1/f response

�f

f
' h(Earth)� h(pulsar)

1/Tobs

red pulsar, 
clock noise?

10�6 Hz10�9 Hz
10�15

measurement 
is imprecise

references 
are not ideal



Ground-based interferometric detectors

• ground-based interferometers use lasers to monitor differential 
length changes of km-size arms  

• sensitive at 10s to 1000s Hz; extremely precise in measuring 
positions; limited by seismic, thermal, photon noise 

See this movie at https://youtu.be/tQ_teIUb3tE

https://youtu.be/tQ_teIUb3tE


Advanced LIGO & Advanced Virgo

iLIGO runs



High-vacuum tubes and chambers



Multiple-stage active and passive seismic isolation



High-power laser, ultra-smooth high-Q test masses



Advanced LIGO sensitivity, September 2016





Inspiral/merger/ringdown GWs from NS and BH 
binaries 
• determine rate of mergers and parameter distributions 
• establish GRB link to NS–NS mergers 
• probe NS equation of state 
• test strong-field GR and alternative theories 

Modeled and unmodeled bursts 
• observe core collapse of massive stars; determine 

blow-up mechanism (neutrino, MHD, acoustic) 
• discover IMBHs (mergers, ringdowns, eccentric 

encounters) 
• look for cosmic (super-)string cusps 
• search in coincidence with EM and neutrino events 

(GRBs, SGRs, pulsar glitches, supernovae), compare 
energetics

LIGO–Virgo science goals…



Continuous waves from rapidly rotating NSs 
• detect elastic or magnetic deformations; 

unstable mode oscillations; free precession 
• understand properties of solid and fluid NS phases 

(inertia tensor, magnetic field, viscosity, internal 
structure) 

• discover accretion-powered GW emission in LMXBs 

Cosmological and astrophysical stochastic 
backgrounds 
• constrain inflationary, superstring, pre-Big Bang 

models 
• look for cosmic strings 
• constrain source populations in the Galactic 

neighborhood

…LIGO–Virgo science goals



• LISA: a 2030s ESA mission with NASA participation, will use laser 
interferometer to monitor picometer fluctuations in the Mkm distance 
between freely-falling test masses protected by the spacecraft

See this movie at https://youtu.be/aTPkoZxyovo

https://youtu.be/aTPkoZxyovo


39

• Equal arms

(D. Shaddock)

+ +–=

To remove clock (laser-frequency) noise 160 dB louder than GWs 
we combine one-way measurements in the interferometers synthesized 
with Time Delay Interferometry

• Unequal arms • TDI



LISA science goals (classic)

“LIGO binaries”



LISA science goals (new)

[Sesana 2016]



Proving data analysis: the Mock LISA Data Challenges



Testing technology: LISA Pathfinder/ST7



Testing technology: LISA Pathfinder/ST7



Joeri van Leeuwen

• Pulsar-Timing Arrays: using pulsars as fundamental clocks  
for GW measurement  

• Pulsars have rapid, regular rotation (ms to s) 
• Radio emission along magnetic field axis; misalignment of rotation 

and magnetic field axes creates “lighthouse” behavior



Pulsars: Nature’s precision clocks 
[Manchester 2015]

binaries

double NSs

Double Pulsar

“normal” 
pulsars

magnetars



Deterministic effects in timing residuals 
f = 300 Hz [Manchester 2015]

spin m
odel

astrom
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binary 

dynam
ics



Pulse profile averaging 
B0950 (P = 253 ms), 100 top pulses in 5-min integration [Stairs 2003]

TOA

�TOA =
W

SNR
�

N�



See this movie 
at http://www.astron.nl/pulsars/animations/



The NANOGrav pulsars 
[McLaughlin 2013]

The NANOGrav 9-year dataset 
[NANOGrav 2015]





isotropic SMBH background 9-year analysis 
[NANOGrav 2015]



detection probability given the PPTA limit 
[Taylor, Vallisneri, et al. 2015]



fin



…to follow, on this screen… 

2: GW theory 
3: GW150914 (colloquium) 
4: data analysis 
5: cosmology and testing GR


