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Lecture Il

Anisotropies in the CMB

® The kinematic dipole
® Description of CMB Anisotropies
® General Relativity for Cosmologists - Part |l

® Computing the Angular Power Spectra



The Kinematic Dipole

A bath of black body radiation provides a reference
frame.



The Kinematic Dipole

A bath of black body radiation provides a reference
frame.

Consider an observer moving relative to this frame

For black body at temperature T|;, the occupation number
for each polarization state is

B 1
n(p) = =5z
erTo —1

A boost leaves occupation numbers invariant, only
changes momenta

—

n(p) = na(pPa)



The Kinematic Dipole

Equivalently
— - 1
na(p) = n(pa-1) = YE(P)(1+5-p)
e kT — 1

The temperature in the frame of the moving observer is

Ts(n) = 5 ~Ty+Tof A+...

A

(using n = —p.) (Peebles, Wilkinson 1968)



The Kinematic Dipole

Equivalently
— - 1
na(p) = n(pa-1) = YE(P)(1+5-p)
e kT — 1

The temperature in the frame of the moving observer is

Ts(n) = 3 ~Ty+Tof -+ ...

A

(using n = —p.) (Peebles, Wilkinson 1968)

We observe intensity rather than temperature



The Kinematic Dipole

CMB experimentalists attempted to measure this effect
soon after the discovery of the CMB and placed upper limits

First measurement of right ascension

Velocity of the Earth with Respect to
the Cosmic Background Radiation
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The Kinematic Dipole

First measurement of right ascension, declination, amplitude
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The Kinematic Dipole
and at higher significance

29.03.10 A Measurement of the Cosmic Microwave Back-
ground Anisotropy at 19 GHz. B.E. COREY and D.T.
WILKINSON, PRINC. U. - A balloon-borne experiment on May
10-11, 1975 measured the large-scale anisotropy of the
cosmic microwave background at 19 GHz. A Dicke-switched
radiometer was used to measure the difference in radia-
tion flux received by two horn antennas pointing 45° down
from the zenith and 180° gpart in azimuth. The apparatus
was rotated about the vertical at 1 rpm to facilitate
the removal of slow drifts in switch offset. Small
corrections for galactic emission were applied to two of
the nine hours of data. The data were fit to a model for
the snisotropy given by AT = T,(v/c) cos 6, where 6 is
the angle between Ehe line of sight and the earth'i
peculiar velocity v. The best-fit parameters for v are
v = 270 + T0 km/sec, a = 13h i_2h, and § = - 259 + 20°
where the errors are formal fitting errors. Possible
systematic errors will be discussed. The results are
only weakly dependent on the size of the galactic correc-
tion. This research was supported in part by the
National Science Foundation.
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The Kinematic Dipole

Detection of Anisotropy in the Cosmic Blackbody Radiation

G. F. Smoot, M. V. Gorenstein, and R. A. Muller
Lawvence Bevkeley Labovatory and Space Sciences Labovatory, University of California,
Bevkeley, California 94720
(Received 6 July 1977)

We have detected anisotropy in the cosmic blackbody radiation with a 33-GHz (0.9 cm)
twin-antenna Dicke radiometer flown to an altitude of 20 km aboard a U-2 aircraft, In
data distributed over two-thirds of the northern hemisphere, we observe an anisotropy
which is well fitted by a first-order spherical harmonic with an amplitude of (3.5+ 0.6)
X107 %°K, and direction [11.0+ 0.6 h right ascension (R.A.) and 6°+ 10° declination (dec)].
This observation is readily interpreted as due to motion of the earth relative to the radi-
ation with a velocity of 390+ 60 km/sec.
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The Kinematic Dipole

Motion relative to the CMB beyond the dipole

At second order”

d . dI
T2
dT~ dT

+
To

(Knox, Kamionkowski 2002)

* lenoring frequency dependent monopole contribution and higsher order terms
g g 1req y dep P g



The Kinematic Dipole

Motion relative to the CMB beyond the dipole

At second order”

To 0
(Knox, Kamionkowski 2002)

kinematic quadrupole

Frequency dependence would allow to distinguish
between kinematic and primordial quadrupole.

Difficult to detect because of foreground contamination,
but maps are corrected for this effect

* lenoring frequency dependent monopole contribution and higsher order terms
g g 1req Yy dep P g



The Kinematic Dipole

Motion relative to the CMB beyond the dipole

Fluctuations are also affected

For n(p) =

relativistic aberration modulation

DO | —

where 5, = 5 - fz(ﬁ- n) and f, = 2—; coth (Z—;) —



The Kinematic Dipole

Motion relative to the CMB beyond the dipole

Fluctuations are also affected

For n(p) =

relativistic aberration modulation

kT kT 2
This has been measured by Planck!  ®ianck2013, 1303.5087)

where 5, = 5 - fz(ﬁ- n) and f, = hw coth (E) !



Primary CMB Anisotropies

The temperature and polarization anisotropies may
be defined after subtraction of kinematic dipole and
quadrupole as

Stokes parameters

N

. AT (n) + ) cos (2(n ) sin (2¢(n))]

S

polarization angle

dl,




Primary CMB Anisotropies

The temperature and polarization anisotropies may
be defined after subtraction of kinematic dipole and
quadrupole as

Stokes parameters

N

. AT (n) + ) cos (2¢)(n ) sin (2¢(n))]

S

polarization angle

dl,

= AL (7)Y e;(¢())e; ((R))



Primary CMB Anisotropies

Temperature and Stokes parameters are usually shown
as color-coded maps

Planck 100 GHz




Primary CMB Anisotropies

Only the correlation functions can be predicted
by theory

A

(N

.
<[

A

Q) -
Q(7) -

as well as higher n-point functions



Primary CMB Anisotropies

For data analysis and comparison with theory, it is
more convenient to use multipole coefficients

orim = [ 0 Y ()AT(0)

A / i Y () (Q(R) + iU (7))



Primary CMB Anisotropies

For data analysis and comparison with theory, it is
more convenient to use multipole coefficients

AT o = / d2h Y () AT (7)
0o — / i Y (R) (Q(R) + iU (R))

AF ¢t m = _(a'P,fm T a’?’,ﬁ —m)/2
AB 4 m = Z.(OJP,EWL _ a};,é —m)/2

under parity agom — (=Dagem  “gradient”

AB.¢m — —(—1)€CLB,£m “curl”



Primary CMB Anisotropies

The correlations are then encoded in the angular
power spectra

k

(arem@T g ) = CTT,0000 O
*

<afT,€ 'maE,e/ m’> — CTE,£5€£’5mm’ 9
*k

(A tm0E g m ) = CEE00 Omm

*
(aBemaB ¢ m) = CBB,Ow Omm:

For Gaussian fluctuations these contain all the

information, for non-Gaussian fluctuations we would
need higher n-point functions



Primary CMB Anisotropies

These angular power spectra can be calculated for a
given model, and they can be estimated from the sky
maps by

5%, = / 220 Y () AT ()

Obs = 2€_|_ 1 Z }a%bz‘m




Primary CMB Anisotropies

These angular power spectra can be calculated for a
given model, and they can be estimated from the sky
maps by

5%, = / 220 Y () AT ()
obs _ obs

This estimator is unbiased

(Co7 1) = Crr.0

/

average over different realizations

estimator

(assumes full skm




Primary CMB Anisotropies

These angular power spectra can be calculated for a
given model, and they can be estimated from the sky
maps by

% = [ 0V (AT (R)
estimator

(assumes full Skmcobs o 1 Z ‘aobs 2
T

T,E_ 2€_|_1 T,Em

m

Cosmic variance

ODS 2
<(CT]%,£ - CTT,£)2> — 20 + 1012?,@



Primary CMB Anisotropies

First claim of a detection in reanalysis of Relikt | data

Anisotropy of the microwave background radiation
I. A. Strukov, A. A. Bryukhanov, D. P. Skulachev, and M. V. Sazhin

Space Research Institute, Russian Academy of Sciences, Moscow
and P. K, Shternberg State Astronomical Institute, Moscow

(Submitted January 19, 1992}
Pis'ma Astron. Zh. 18, 387-395 (May 1992

New results from analysis of data on the anisotropy of the background radiation at 37 GHz (spaceborne
experiment Relikt 1) are presented. The relative magnitude of the quadrupole component was estimated with
90% confidence for an inflationary perturbation spectrum: 6-10 <47 ,/T <3.3-107°. An anomaly of the
microwave radiation has been found, with 99% confidence, in a region with area=1 sr near the point with
coordinates @ ~1"30™ and 8 ~-10° (! = 150" and b = ~70%). The magnitude of this anomaly is AT, = 71 %43
u K with 90% confidence. We discuss possible sources of the anomaly.

Single frequency measurement at 37 GHz



Primary CMB Anisotropies

STRUCTURE IN THE COBE' DIFFERENTIAL MICROWAVE RADIOMETER FIRST-YEAR MAPS

G. F. Smoor,? C. L. BenneTT,> A. KoGgut,* E. L. WRIGHT,? J. AYMON,2 N. W. BoGgaess,® E. S. CHENG,?
G. DE Amicy,? S. GuLKis,® M. G. HAUsER,® G. HINsHAW,* P. D. JACKSON,” M. JANSSEN,®
E. KarTA,” T. KeLsALL,> P. KEEGSTRA,” C. LINEWEAVER,?> K. LOEWENSTEIN,” P. LUBIN,?
J. MATHER,? S. S. MEYER,® S. H. MoseLEY,? T. MURDOCK,!? L. ROKKE,’

R. F. SILVERBERG,> L. TENORIO,? R. WEIss,® AND D. T. WILKINSON!!
Received 1992 April 21 ; accepted 1992 June 12

ABSTRACT

The first year of data from the Differential Microwave Radiometers (DMR) on the Cosmic Backgoround
Explorer (COBE) show statistically significant (> 7 o) structure that is well described as scale-invariant fluctua-
tions with a Gaussian distribution. The major portion of the observed structure cannot be attributed to
known systematic errors in the instrument, artifacts generated in the data processing, or known Galactic emis-
sion. The structure is consistent with a thermal spectrum at 31, 53, and 90 GHz as expected for cosmic micro-
wave background anisotropy.




Primary CMB Anisotropies
1997
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Primary CMB Anisotropies
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Primary CMB Anisotropies

2010
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Primary CMB Anisotropies

(1+1)C/2m [uK?]

D=

A2, [uK?]

7000 p—r—rrrer
6000 f
5000 f
4000 f
3000 f
2000 f
1000 |

500 |
250 |

—250 f
~500 f

vvvvvvvv

T T T T T T T T T T T T T

Planck TT spectrum

2015

.
AAAAAAA

| |

1000

Multipole {

1500

2000

200

100

) 4 0

-100

4 —200
2500




General Relativity - Part I

We saw that the composition and evolution of the
FLRWV universe are described by

ds® = —dt* + a*dz”

T = pdt* + a*pdz”



General Relativity - Part I

We saw that the composition and evolution of the
FLRWV universe are described by

ds® = —dt* + a*dz”
T = pdt* + a*pdz”

To describe the anisotropies, we must consider
small perturbations around the FLRWV background

ds* = (=1 + hgo)dt® + 2ho;dtdx’ + (a®5;; + hy;)dz'da?

T = (,5 -+ 5T00)dt2 -+ 25T0@dtd332 -+ (&2]557;3' + 5Tw)dﬂfzd$]



General Relativity - Part I

Under an infinitesimal coordinate transformation
ot — ot + ' (x)

the perturbations transform

Ahgo = —2%
(’9@- 5’60 a
Ah ;= — — . 2— i
0 ot  Ox* * ae
Oe; e
Ah@] — _(’hj aaj + QCLCLGO

We can use and choice of coordinates (or gauge) that
IS convenient



General Relativity - Part I

Under an infinitesimal coordinate transformation
ot — ot + ' (x)

the perturbations transform

Ahgo = —2%
(’9@- 5’60 a
Ah ;= — — . 2— i
0 ot  Ox* * ae
Oe; e
Ah@] — _(’hj aaj + QCLCLGO

We can use and choice of coordinates (or gauge) that
is convenient, e.g. synchronous gauge

hoo = 0 hoi =0



General Relativity - Part I

In synchronous gauge
ds* = —dt* + (a®8;; + hy;)dz'da’
0T = dpdt® — 2(p + p)du,dtdz* + (a*(6pdi; + mij) + Phyj) da'da’

We can decompose the perturbations into scalar,
vector, and tensor perturbations.

Su; = 0;0u + du)

Tij = 0;0,m + &m;/ +0;m) + W,Z;



General Relativity - Part I

In synchronous gauge
ds* = —dt* + (a®8;; + hy;)dz'da’
0T = dpdt® — 2(p + p)du,dtdz* + (a*(6pdi; + mij) + Phyj) da'da’

We can decompose the perturbations into scalar,
vector, and tensor perturbations.

Tij = &;fijﬂs + azT"JV T ajﬂ-y + 7TZ;-

Rotational invariance of the background imply that
these do not mix and we can study one at a time.



General Relativity - Part I

Note that we can only generate a gradient field
from scalar perturbations, not a curl

scalar modes Crr.e,CrE0, CEEC
vector modes Crre,CrE0, CEE L, CBB Y
tensor modes Crr.e,Cree,CeEe,CBBY

If vector modes are not sourced, they rapidly decay

So B-mode detection is an indirect measurement of
gravitational waves



Equations of motion

To work out the equations, we must first know what
epoch we should begin our calculation.

Early enough for rapid thermalization, not so early
that other degrees of freedom appear in the plasma

6 x 10K < T < 10°K is convenient

In ACDM — p
€ He

Y dark matter

cosmological
constant



Equations of motion

How do we describe the various components!?

Electrons and protons elastically scatter very efficiently.
They can be described as one “baryon” fluid.

For cold dark matter a hydrodynamic description is also
sufficient because it is extremely non-relativistic, i.e.“dust”.

Neutrinos free-stream, leading to anisotropic stress.
They are usually described by a Boltzmann hierarchy.

If we are interested in the polarization of photons we have
to keep track of it and describe them by a Boltzmann
hierarchy.



Equations of motion

Toy example:

Perturbations in a thermal gas of massless particles

Instead of keeping track of the trajectories of all particles,
we will describe it by the phase space density

Since . 1=
:ET A p’l"
= and =0
a dt
it satisfies a collisionless Boltzmann equation
on A
= —p-Vn

ot



Equations of motion

Toy example:

Like for photons, temperature perturbations are related
to intensity perturbations by
AL () =

T

A differential measurement sensitive to all frequencies
probes

AT(7)

/ dv Al (n) 4AT / dvi,
0 0

This makes it natural to define the “temperature’ anisotropy

L 1 fpidp .
AT(QB,p) = 7/ 5%(33,]?]9)



Equations of motion

Toy example:

It satisfies
OAT(Z,p,t . o
rl,5,1) +p- VAr(Z,p,t) =0
ot
Translational invariance suggests to look for solutions

- A d3q i
AT(xapat) :/(QW)g@(q;AT(Q7M7t)6q

q-p

aAT(Q? s t)
ot

(Of course, the solution to this equation is trivial, but let’s keep going)



Equations of motion

Toy example:

The temperature anisotropies at the origin at some time ¢
are

and

. d’ . /n
orim =" [ a7 (@)Arilasto

with A7 ¢(q,to) defined by

Ar(q, p,to) = Z(—i)é(% + 1) Pe(p)Are(g, to)
¢



Equations of motion

Toy example:

This suggests to derive equations directly for

A1 .e(q,t0)

These equations are called the Boltzmann hierarchy
In our toy example

q
20+ 1

Are(q,t) + (£ +1)Are1(q,t) — LAT-1(q, )] =0

Analogous equations can be derived for the polarization
anisotropy.



Equations of motion

Beyond the toy example

For interacting particles one finds

OAT(q, p,t .
ngt 0 +iquAr (g, p, 1) = —wAr(q, 1, t) + wF [Aro(g, 1), Ar2(g, 1), 1]

with formal solution

A (i t) = A (g, e eoli—0)
t
- / dte ") e~ ) (AT (g, 1), Ara(q, 1), ¢]
ti
Since only low multipoles appear in the collision terms,

one can solve a truncation of the hierarchy and obtain the
higher multipoles through this “line-of-sight integration™



Equations of motion

Beyond the toy example

The same derivation generalizes to a general spacetime

In this case define the phase space density
7p27 ZCS:C _ZE ( p’t’l“(t))

The definition of momentum and the geodesic equation imply

dz'  p dp;  pp' Ogp

dt  p° dt  2pY Oxt

on N p* On N 1 pFp!t g™ On
ot pYoxk 2 pb Oz™ Op,,
Derivation of the Boltzmann hierarchy as before but more
tedious.

=C

and



Equations of motion

Photons
r (S q S (S)
Ag,,,z(q, t) + a(20+ 1) [(f - 1)A(T,2+1(q, t) — gAT,E—l(Qa t)}
: : 1 2
= —w(DAP)(q.t) — 244600 + 2¢° B, (g%o - 1—55&2>
1 4
twe AT )00 + Towelloe2 — g%wc&bb q0e,1
A (S q S (S)
A%} (q,t) + a(20 + 1) (£ + 1)A§3,Z+1(q,t) - KAP7£_1(q,t)}
() 1 !
= —we)AS)(@, ) + SweOTI(g, ) (be0+ b2

with source function

I = AP +AF) +AR)



Equations of motion

Photons
A (S q S S
| . /1 2
— _wc(t)Agfz (CL t) - 2Aq5£,0 + 2q2Bq <§5£,0 o B5£’2>
1 4
Fao A 500 + Swlldy s - ggwcéubq&,l
A (S q S S
ARt + ey [+ AR (0 — AF) (0.0)]
(5) 1 1
= —we()AE) (0,0) + Swet)TT(a,7) (B + 200

with source function

n o= Al +Ag§;

Polarization sourced by temperature quadrupole



Equations of motion

Photons

The components of the stress tensor can be written as

S
510’761 — va;,37
p s s
0Pyq = - (AEF,())"I'ASF,%)»

3

3a S
OUyg = —ZgA(T,iy

— S
¢, = BAL

At early times when Compton scattering is efficient
Arey—0 for £>2
Ap)g — 0

The Boltzmann hierarchy reduces to the equations of
hydrodynamics



Equations of motion

Neutrinos

\ q
A + gy | DA (00— AT (0. 1)] =

— 2Aq(5£,0 + 2q2Bq (§5£,O _ 1_556,2)

Baryons

Energy conservation
. 3a q° 1 : )
0Pbq + ECSpbq - ?ﬁb(subq + 5P (3Aq —4q Bq) =0

Momentum conservation

) 4ﬁ 3a S)
Oy, + ——w,(t <5u + ——A q,t)—()
it g 2a®) (g + 10 AT (0.1



Equations of motion

Dark Matter

 3a 1 .
Sfeq + —0peq + 5Peq (34, - ¢*B,) =0

Scalar metric perturbations

2 a .
q—Aq—Fg (3Aq - quq) = 8rG (5:0qb +0pge + ﬁvAé:S,g T ﬁ,,A,(/i)))

CL2

. B a_ a_
Ay =81G (pb5ubq - gpfyA(TS,i(q, t) — 5/),/&(&)((1, t))



Initial Conditions

What remains is the choice of initial conditions

HA
k/a

} >
Qrec a

All modes are “outside the horizon” at early times.

1 «H
a



Initial Conditions

At early times the Boltzmann hierarchy for photons
reduces to the equations of hydrodynamics

This suggests we can look for a solution of the form

A _ A _ dope _ 4opy _ AS)
o v 3 pc 3 ﬁb ’

S S 1q _A(S

AL o AR = —5Olbg = AP

These are adiabatic initial conditions



Initial Conditions

o A
In this limit R, = 7‘1 + Hdu, becomes a constant
and we can normalize our solution such that R, — 722

Then during radiation domination

2,9

(S) A gt o,

A0 (Q7t)_§a2<t>Rqa
343

(S) 8 gt
A1 (q,t)_ﬁa?’(t)qu

S 16 ¢t
ALY (g,1)

2 Af, q*t
Aﬂﬂ:<é sy 4 )RO

C3154+4f,a%(t))V
: 20 e
2B, (t) = R
7B = 15 e R
23 +4f,
A (g, t) = ZEM A9 g 1)

15441,



Initial Conditions

These are the equations and initial conditions used by the
Boltzmann codes such as CAMB or CLASS.

With the solution at hand, one computes

] mx* /[ ~ S
o) = nTyit / Pq oY ()AE)(g, to)

or directly
2

S S
Cipy = 7°T5 / q°dq ‘A%}(q, to)
similarly for polarization and tensor contribution

CLASS

the Cosmic Linear Anisotropy Solving System

Code for Anisotropies in the Microwave Background

by Antony Lewis and Anthony Challinor



From eV to Inflation

T0

dk |
c@w = 4rT2 | =A% (k) / drS\2 (k, 7)je(k(ro — 7))

0




From eV to Inflation

Initial Conditions Late time evolution

\ / “\,

2
S
C( )76 4 Tg_

Physics of Recombination \

Geometry



From eV to Inflation

So far, these are initial conditions for the system of
equations that governs the evolution of the
universe from around few keV to the present

In this limit, the system has 5 solutions that do not

decay, one “adiabatic” solution and 4 “isocurvature’
(Bucher et al. 1999)

’

solutions.

Experimentally, only the adiabatic solution seems
excited for which R is constant.



From eV to Inflation

k/a

} >
Qrec a

We can extrapolate backwards very easily at least
until the temperatures become high enough for
new degrees of freedom to appear.



From eV to Inflation

Outside the horizon, this adiabatic solution with
constant R exists not only for the matter content
present below a few keV, but for a general matter
content. (Weinberg2009)

To generate the perturbations causally, they cannot
have been outside the horizon very early on.
This requires a phase with

d : :
- (aﬁﬁl\) <0 (e.g. inflation or bounce)



From eV to Inflation

k/a

} >
Qrec a

The perturbations are generated as quantum fluctuations
while inside the horizon, and then exit the horizon.



From eV to Inflation

There are two cases in which the solution with
constant R is known to be an attractor:

* Single field inflation

* Phase of thermal equilibrium without
conserved charges.

In single field inflation, the anisotropies in the CMB
directly tell us about the inflationary dynamics!



From eV to Inflation

For standard single field slow-roll inflation, the
primordial spectrum of scalar perturbations is

AZ () = () a2 <i)ns—1

- 8m2e(ty,) Qs
with ne =1—4e, — 20,
H H
and €= ——— §—
H? 2HH

and the 3-pt function too small to be observed.



