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• The kinematic dipole

• Description of CMB Anisotropies

• General Relativity for Cosmologists - Part II

• Computing the Angular Power Spectra

Anisotropies in the CMB



The Kinematic Dipole

A bath of black body radiation provides a reference 
frame.



A bath of black body radiation provides a reference 
frame.

Consider an observer moving relative to this frame

For black body at temperature    , the occupation number 
for each polarization state is

T0

A boost leaves occupation numbers invariant, only 
changes momenta

n(�p) =
1

e
E(�p)
kT0 − 1

n(�p) = nΛ(�pΛ)
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(using             .)

Equivalently

The temperature in the frame of the moving observer is

n̂ = −p̂

Tβ(n̂) =
T0

γ(1− �β · n̂)
≈ T0 + T0

�β · n̂+ . . .

(Peebles, Wilkinson 1968)

nΛ(�p) = n(�pΛ−1) =
1

e
γE(�p)(1+�β·p̂)

kT0 − 1
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(using             .)

Equivalently

The temperature in the frame of the moving observer is

n̂ = −p̂

We observe intensity rather than temperature

Tβ(n̂) =
T0

γ(1− �β · n̂)
≈ T0 + T0

�β · n̂+ . . .

(Peebles, Wilkinson 1968)

Iν(n̂, �β) = Īν +
dĪν
dT

����
T0

T0
�β · n̂+ . . .

nΛ(�p) = n(�pΛ−1) =
1

e
γE(�p)(1+�β·p̂)

kT0 − 1
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CMB experimentalists attempted to measure this effect 
soon after the discovery of the CMB and placed upper limits 

First measurement of right ascension
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First measurement of right ascension, declination, amplitude
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and at higher significance
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Detection of Anisotropy in the Cosmic Blackbody Radiation

G. F. Smoot, M. V. Gorenstein, and R. A. Muller
Laxorence Berkeley Laboratory and Space Sciences Laboratory, University of California,

Berkeley, California 94720
(Received 6 July 1977)

We have detected anisotropy in the cosmic blackbody radiation with a 88-GHz (0.9 cm)
twin-antenna Dicke radiometer flown to an altitude of 20 km aboard a U-2 aircraft. In
data distributed over two-thirds of the northern hemisphere, we observe an anisotropy
which is well fitted by a first-order spherical harmonic with an amplitude of (3.5+ 0.6)
x 10 'K, and direction [11.0+ 0.6 h right ascension (B.A.) and 6'+ 10' declination (dec)].
This observation is readily interpreted as due to motion of the earth relative to the radi-
ation with a velocity of 890+ 60 km/sec.

The observed isotropy of the 3'K cosmic black-
body radiation to about one part in 10' is the
strongest evidence in support of the cosmological
principle, the basic assumption of cosmology
that the universe is isotropic and homogeneous
on a large scale. Anisotropy at the 10'-10 4

level is expected to exist from the Doppler shift
due to the motion of the earth with respect to the
ancient matter which emitted the radiation. Ani-
sotropies would also exist if there were nonsym-
metric expansion of the universe or large-scale
irregularities in the distribution of matter or en-
ergy. Until recently, interference from galactic
emissions had prevented anisotropy in the cosmic
blackbody radiation from being unambiguously ob-
served. ' Preliminary reports of a positive effect
have been made now by Corey and Wilkenson'
and by this group. ' We present here the results
of a survey spanning approximately two-thirds
of the northern hemisphere, taken at 0,9 cm, a
wavelength at which the galactic background is
small.
The experiment was conducted in a series of

eight flights aboard the NASA-Ames Earth Survey
(U-2) Aircraft. Anisotropy in the cosmic radia-
tion was detected at 33 GHz with a twin-antenna
Dieke radiometer' %'hich measured the diffei ence
in sky temperature between two regions 60 apar't
and on opposite sides of the zenith. The best re-
ceiver, used on the final four flights, has a sen-
sit~vity limited by thermal noise with an rms
fluctuation of 0.044'K/Hz't'. The receivers used
on the earlier flights had rms fluctuations about
tviice as large. The apparatus is shown schemat-
ically in Fig. 1; details of its design and construc-
tion will be given elsewhere. '
Effort was made in the design of the apparatus

to reduce all expected systematic errors mell be-
low the millikelvin level. To achieve the desired
sensitivity, the apparatus was radio-frequency

and magnetically shielded, and carefully ther-
mally stabilized. ' The antennas were specially
designed (dual-inode corrugated cones) with a
beam pattern 7' wide full width at half-maximum
(FWHM). The measured antenna gain in the di-
rection of the earth was below 10 '; anisotropic
emission from the earth and aircraft contributed
less than 0.2 m K. A second twin-antenna radi-
ometer operating at 54 GHz was used to monitor
and eliminate anisotropic atmospheric back-
ground. This second system was sensitive to the
strong-oxygen-emission region centered at 60
GHz and was calibrated at altitude by banking the
airplane at angles of 5' to 25'. The monitor
showt d that the autopilot maintain0d level flight
during data-taking periods to better than 0.2' of
bank; the resulting spurious signal at 33 GHz

33 6Hz
Receiver

&&To tape recorder and controller

FIG. 1. Schematic view of the apparatus mounted in
the U-2 aircraft. The anisotropy reported in this Letter
was detected with the BB-GHz radiometer; the 54-GIIz
radiometer monitored the oxygen anisotropy above the
aircraft.
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Motion relative to the CMB beyond the dipole

At second order*

Iν(n̂, �β) = Īν +
dĪν
dT

����
T0

T0βP1(β̂ · n̂) + 1

3
β2P2(β̂ · n̂)

�
d

dT
T 2 dĪν

dT

����
T0

�
+ . . .

* Ignoring frequency dependent monopole contribution and higher order terms

(Knox, Kamionkowski 2002)
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At second order*

Iν(n̂, �β) = Īν +
dĪν
dT

����
T0

T0βP1(β̂ · n̂) + 1

3
β2P2(β̂ · n̂)

�
d

dT
T 2 dĪν

dT

����
T0

�
+ . . .

* Ignoring frequency dependent monopole contribution and higher order terms

(Knox, Kamionkowski 2002)
kinematic quadrupole

Difficult to detect because of foreground contamination,
but maps are corrected for this effect

Frequency dependence would allow to distinguish 
between kinematic and primordial quadrupole.

Motion relative to the CMB beyond the dipole

The Kinematic Dipole



with                            ,             

Fluctuations are also affected

n(�p) =
1

e
E(�p)
kT (n̂) − 1

�β⊥ = �β − n̂(�β · n̂)

For

fν =
hν

kT
coth

�
hν

kT

�
− 1

2

relativistic aberration modulation

Motion relative to the CMB beyond the dipole

n̂ = −p̂

where and

The Kinematic Dipole

∆Iν(n̂, �β) =
dĪν
dT

����
T0

�
T0

�β · n̂+∆T
�
n̂− �β⊥)

�
(1 + fν �β · n̂)

�
+ . . .

T (n̂) = T0 +∆T (n̂)



with                            ,             

Fluctuations are also affected

n(�p) =
1

e
E(�p)
kT (n̂) − 1

�β⊥ = �β − n̂(�β · n̂)

For

fν =
hν

kT
coth

�
hν

kT

�
− 1

2

relativistic aberration modulation

Motion relative to the CMB beyond the dipole

n̂ = −p̂

where and

This has been measured by Planck! (Planck 2013, 1303.5087)

The Kinematic Dipole

∆Iν(n̂, �β) =
dĪν
dT

����
T0

�
T0

�β · n̂+∆T
�
n̂− �β⊥)

�
(1 + fν �β · n̂)

�
+ . . .

T (n̂) = T0 +∆T (n̂)



Primary CMB Anisotropies

The temperature and polarization anisotropies may 
be defined after subtraction of kinematic dipole and 
quadrupole as

polarization angle

Stokes parameters

∆Iν(n̂,ψ(n̂)) =
dĪν
dT

����
T0

[∆T (n̂) +Q(n̂) cos (2ψ(n̂)) + U(n̂) sin (2ψ(n̂))]



Primary CMB Anisotropies

The temperature and polarization anisotropies may 
be defined after subtraction of kinematic dipole and 
quadrupole as

polarization angle

Stokes parameters

∆Iν(n̂,ψ(n̂)) =
dĪν
dT

����
T0

[∆T (n̂) +Q(n̂) cos (2ψ(n̂)) + U(n̂) sin (2ψ(n̂))]

= ∆Iν(n̂)
ijei(ψ(n̂))ej(ψ(n̂))



Temperature and Stokes parameters are usually shown 
as color-coded maps

– 21 –

Fig. 3.— Nine-year temperature sky maps in Galactic coordinates shown in a Mollweide
projection. Maps have been slightly smoothed with a 0.◦2 Gaussian beam.

– 21 –

Fig. 3.— Nine-year temperature sky maps in Galactic coordinates shown in a Mollweide
projection. Maps have been slightly smoothed with a 0.◦2 Gaussian beam.
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�∆T (n̂)∆T (n̂�)� ,

�∆T (n̂) [Q(n̂�) + iU(n̂�)]� ,

�[Q(n̂) + iU(n̂)] [Q(n̂�) + iU(n̂�)]� ,

�[Q(n̂) + iU(n̂)] [Q(n̂�)− iU(n̂�)]� .

Only the correlation functions can be predicted 
by theory

as well as higher n-point functions

Primary CMB Anisotropies



For data analysis and comparison with theory, it is 
more convenient to use multipole coefficients

aT,�m =

�
d2n̂ Y m

�
∗(n̂)∆T (n̂)

aP,�m =

�
d2n̂ 2Y

m
�

∗(n̂) (Q(n̂) + iU(n̂))
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For data analysis and comparison with theory, it is 
more convenient to use multipole coefficients

aT,�m =

�
d2n̂ Y m

�
∗(n̂)∆T (n̂)

aP,�m =

�
d2n̂ 2Y

m
�

∗(n̂) (Q(n̂) + iU(n̂))

aE,�m ≡ −(aP,�m + a∗P,�−m)/2

aB,�m ≡ i(aP,�m − a∗P,�−m)/2

Primary CMB Anisotropies

aE,�m → (−1)�aE,�m

aB,�m → −(−1)�aB,�m

under parity “gradient”

“curl”



The correlations are then encoded in the angular 
power spectra

�
aT,�ma∗T,�� m�

�
= CTT,�δ���δmm� ,

�
aT,�ma∗E,�� m�

�
= CTE,�δ���δmm� ,

�
aE,�ma∗E,�� m�

�
= CEE,�δ���δmm� ,

�
aB,�ma∗B,�� m�

�
= CBB,�δ���δmm� ,

For Gaussian fluctuations these contain all the 
information, for non-Gaussian fluctuations we would 
need higher n-point functions

Primary CMB Anisotropies



These angular power spectra can be calculated for a 
given model, and they can be estimated from the sky 
maps by

Cobs
TT,� ≡

1

2�+ 1

�

m

��aobsT,�m

��2

aobsT,�m =

�
d2n̂ Y m

�
∗(n̂)∆T (n̂)
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These angular power spectra can be calculated for a 
given model, and they can be estimated from the sky 
maps by

Cobs
TT,� ≡

1

2�+ 1

�

m

��aobsT,�m

��2

aobsT,�m =

�
d2n̂ Y m

�
∗(n̂)∆T (n̂)

This estimator is unbiased

�Cobs
TT,�� = CTT,�

estimator

average over different realizations

(assumes full sky)

Primary CMB Anisotropies



Primary CMB Anisotropies

These angular power spectra can be calculated for a 
given model, and they can be estimated from the sky 
maps by

Cobs
TT,� ≡

1

2�+ 1

�

m

��aobsT,�m

��2

aobsT,�m =

�
d2n̂ Y m

�
∗(n̂)∆T (n̂)

Cosmic variance

estimator

�(Cobs
TT,� − CTT,�)

2� = 2

2�+ 1
C2

TT,�

(assumes full sky)
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First claim of a detection in reanalysis of Relikt I data

Single frequency measurement at 37 GHz
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Primary CMB Anisotropies

FIG. 3. Comparison of defect model predictions to current
experimental data. All models were COBE normalised at
l = 10.

portance of vector and tensor modes will be described
elsewhere [4].) The large amplitude of vector modes and
the decoherent sum of eigenmodes leads to a suppres-
sion of power at l >

∼ 100 [8], a very different spectrum to
that expected from adiabatic fluctuations in inflationary
models. We show a comparison between the predictions
of the global field defect theories and the current gener-
ation of CMB experiments in Figure 3. All models are
normalised to COBE at l = 10. They are all systemat-
ically lower than the current degree-scale experimental
points.

The same calculations directly yield the matter power
spectrum shown in Figure 4. Normalised to COBE, our
tests indicate that the results should be reliable to a few
percent. From the power spectra we derive the nor-
malization σ8 of the matter fluctuation in 8h−1 Mpc
spheres. Global strings, monopoles, texture and N = 6
non-topological texture give σ8 = 0.26, 0.25, 0.23, 0.21,
respectively, for h = 0.5, and scaling approximately as
h. The field normalization for textures is ε = 8π2Gφ2

0 =
1.0 × 10−4, consistent with our previous calculation [3]
of ε = 1.1 × 10−4. These normalizations are a factor of
5 lower than the generic prediction of n = 1 inflationary
models where σ8 = 1.2 for h = 0.5. Cluster abundances
suggest values of σ8 ∼ 0.5 for a flat universe.

To summarise, the techniques used here enable us
to convert unequal time correlators into temperature
anisotropy and matter fluctuation power spectra within
a few hours on a workstation. For all the defect theo-
ries, vectors contribute approximately half of the total
CMB anisotropy on large scales, leading to a suppression
of acoustic peaks and a low normalization of the matter
power spectrum σ8 ∼ 0.25h50. Current observations of

FIG. 4. Matter power spectra computed from the Boltz-
mann code summed over the eigenmodes. The upper curve
shows the standard cold dark matter (sCDM) power spec-
trum. The defects generally have more power on small scales
than large scales relative to the adiabatic sCDM model. The
data points show the mass power spectrum as inferred from
the galaxy distribution [9].

CMB anisotropies and galaxy clustering do not favor the
models under consideration.

We thank Robert Crittenden, Robert Caldwell and
Lloyd Knox for helpful discussions and John Peacock and
Max Tegmark for providing observational data points.
This research was conducted in cooperation with Silicon
Graphics/Cray Research utilising the Origin 2000 super-
computer as part of the UK-CCC facility supported by
HEFCE and PPARC (UK).
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General Relativity - Part II

We saw that the composition and evolution of the 
FLRW universe are described by

ds2 = −dt2 + a2d�x2

T = ρ̄dt2 + a2p̄d�x2



General Relativity - Part II

To describe the anisotropies, we must consider 
small perturbations around the FLRW background

ds2 = (−1 + h00)dt
2 + 2h0idtdx

i + (a2δij + hij)dx
idxj

We saw that the composition and evolution of the 
FLRW universe are described by

ds2 = −dt2 + a2d�x2

T = ρ̄dt2 + a2p̄d�x2

T = (ρ̄+ δT00)dt
2 + 2δT0idtdx

i + (a2p̄δij + δTij)dx
idxj



General Relativity - Part II

Under an infinitesimal coordinate transformation

xµ → xµ + �µ(x)

∆h00 = −2
∂�0
∂t

the perturbations transform

∆h0i = −∂�i
∂t

− ∂�0
∂xi

+ 2
ȧ

a
�i

∆hij = − ∂�i
∂xj

− ∂�j
∂xi

+ 2aȧ�0

We can use and choice of coordinates (or gauge) that 
is convenient



General Relativity - Part II

Under an infinitesimal coordinate transformation

xµ → xµ + �µ(x)

∆h00 = −2
∂�0
∂t

the perturbations transform

∆h0i = −∂�i
∂t

− ∂�0
∂xi

+ 2
ȧ

a
�i

∆hij = − ∂�i
∂xj

− ∂�j
∂xi

+ 2aȧ�0

We can use and choice of coordinates (or gauge) that 
is convenient, e.g. synchronous gauge  

h00 = 0 h0i = 0



General Relativity - Part II

ds2 = −dt2 + (a2δij + hij)dx
idxj

In synchronous gauge

We can decompose the perturbations into scalar, 
vector, and tensor perturbations.

δui = ∂iδu+ δuV
i

πij = ∂i∂jπ
S + ∂iπ

V
j + ∂jπ

V
i + πT

ij

hij = a2(Aδij + ∂i∂jB + ∂iC
V
j + ∂jC

V
i + hT

ij)

δT = δρ dt2 − 2(ρ̄+ p̄)δuidtdx
i +

�
a2(δp δij + πij) + p̄hij

�
dxidxj



General Relativity - Part II

ds2 = −dt2 + (a2δij + hij)dx
idxj

In synchronous gauge

We can decompose the perturbations into scalar, 
vector, and tensor perturbations.

δui = ∂iδu+ δuV
i

πij = ∂i∂jπ
S + ∂iπ

V
j + ∂jπ

V
i + πT

ij

hij = a2(Aδij + ∂i∂jB + ∂iC
V
j + ∂jC

V
i + hT

ij)

Rotational invariance of the background imply that 
these do not mix and we can study one at a time.

δT = δρ dt2 − 2(ρ̄+ p̄)δuidtdx
i +

�
a2(δp δij + πij) + p̄hij

�
dxidxj



General Relativity - Part II

Note that we can only generate a gradient field 
from scalar perturbations, not a curl

scalar modes

tensor modes

vector modes

CTT,�, CTE,�, CEE,�

CTT,�, CTE,�, CEE,�, CBB,�

CTT,�, CTE,�, CEE,�, CBB,�

If vector modes are not sourced, they rapidly decay

So B-mode detection is an indirect measurement of 
gravitational waves



To work out the equations, we must first know what 
epoch we should begin our calculation.

Early enough for rapid thermalization, not so early 
that other degrees of freedom appear in the plasma

6× 106K < T < 109K

dark matter

cosmological 
constant

ΛCDMIn

γ

e− p

ν

He

is convenient

Equations of motion



Equations of motion

How do we describe the various components?

For cold dark matter a hydrodynamic description is also 
sufficient because it is extremely non-relativistic, i.e. “dust”. 

Neutrinos free-stream, leading to anisotropic stress. 
They are usually described by a Boltzmann hierarchy.

If we are interested in the polarization of photons we have 
to keep track of it and describe them by a Boltzmann 
hierarchy.

Electrons and protons elastically scatter very efficiently.
They can be described as one “baryon” fluid.



Equations of motion

Toy example: 

Perturbations in a thermal gas of massless particles

Instead of keeping track of the trajectories of all particles,
we will describe it by the phase space density

Since 

n(�x, �p, t) ≡
�

r

δ(�x− �xr(t))δ(�p− �pr(t))

d�xr

dt
= p̂r

d�pr
dt

= 0and

it satisfies a collisionless Boltzmann equation
∂n

∂t
= −p̂ ·∇n



Equations of motion

Toy example: 

∆Iν(n̂) =
dĪν
dT

����
T0

∆T (n̂)

Like for photons, temperature perturbations are related 
to intensity perturbations by

A differential measurement sensitive to all frequencies 
probes

This makes it natural to define the “temperature” anisotropy

∞�

0

dν∆Iν(n̂) =
4∆T (n̂)

T0

∞�

0

dνĪν

∆T (�x, p̂) =
1

Ī

�
p3dp

(2π)3
δn(�x, p p̂)



Equations of motion

Toy example: 

It satisfies
∂∆T (�x, p̂, t)

∂t
+ p̂ ·∇∆T (�x, p̂, t) = 0

Translational invariance suggests to look for solutions

q̂ · p̂
∂∆T (q, µ, t)

∂t
+ iqµ∆T (q, µ, t) = 0

∆T (�x, p̂, t) =

�
d3q

(2π)3
α(�q)∆T (q, µ, t)e

i�q·�x

(Of course, the solution to this equation is trivial, but let’s keep going)



Equations of motion

Toy example: 

The temperature anisotropies at the origin at some time    
are

t0

and

with                  defined by∆T,�(q, t0)

aT,�m = πi�
�

d3q

(2π)3
α(�q)Y ∗

�m(q̂)∆T,�(q, t0)

∆T (n̂)

T0
=

1

4
∆T (�x = 0,−n̂, t0)

∆T (q, µ, t0) =
�

�

(−i)�(2�+ 1)P�(µ)∆T,�(q, t0)



Equations of motion

Toy example: 

These equations are called the Boltzmann hierarchy

∆̇T,�(q, t) +
q

2�+ 1
[(�+ 1)∆T,�+1(q, t)− �∆T,�−1(q, t)] = 0

This suggests to derive equations directly for

∆T,�(q, t0)

In our toy example

Analogous equations can be derived for the polarization 
anisotropy.



Equations of motion

Beyond the toy example

For interacting particles one finds

with formal solution

+ω

t�

ti

dte−iqµ(t−t�)e−ω(t−t�)F [∆T,0(q, t),∆T,2(q, t), t]

∆T (q, µ, t) = ∆T (q, µ, ti)e
−iqµ(t−ti)e−ω(t−ti)

Since only low multipoles appear in the collision terms, 
one can solve a truncation of the hierarchy and obtain the 
higher multipoles through this “line-of-sight integration”

∂∆T (q, µ, t)

∂t
+ iqµ∆T (q, µ, t) = −ω∆T (q, µ, t) + ωF [∆T,0(q, t),∆T,2(q, t), t]



The same derivation generalizes to a general spacetime 

dxi

dt
=

pi

p0
dpi
dt

=
pkpl

2p0
∂gkl
∂xi

Beyond the toy example

and

The definition of momentum and the geodesic equation imply

Equations of motion

∂n

∂t
+

pk

p0
∂n

∂xk
+

1

2

pkpl

p0
∂gkl

∂xm

∂n

∂pm
= C

In this case define the phase space density

n(xi, pi, t) ≡
�

r

δ(xi − xi
r(t))δ(pi − pi r(t))

Derivation of the Boltzmann hierarchy as before but more 
tedious.



Photons

Equations of motion

with source function

∆̇(S)
P,�(q, t) +

q

a(2�+ 1)

�
(�+ 1)∆(S)

P,�+1(q, t)− �∆(S)
P,�−1(q, t)

�

= −ωc(t)∆
(S)
P,�(q, t) +

1

2
ωc(t)Π(q, t)

�
δ�,0 +

1

5
δ�,2

�

∆̇(S)
T,�(q, t) +

q

a(2�+ 1)

�
(�+ 1)∆(S)

T,�+1(q, t)− �∆(S)
T,�−1(q, t)

�

= −ωc(t)∆
(S)
T,�(q, t)− 2Ȧqδ�,0 + 2q2Ḃq

�
1

3
δ�,0 −

2

15
δ�,2

�
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To turn this into a closed system, one thus only needs to know the metric

components appearing in these equations as well as the velocity potential.

Their time evolution is of course governed by the Einstein equations, and we

give the complete system of equations in the next subsection. To do this, we

will also need to know the components of the stress-energy tensor in terms of
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Another way to find a somewhat formal solution to the coupled Boltz-

mann equations for ∆(S)
T and ∆(S)

P is to treat the system as an inhomogeneous

system of ordinary differential equations and solve it as if the sources were

known. This solution is commonly referred to as integrating the equations
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Equations of motion

Photons
The components of the stress tensor can be written as

At early times when Compton scattering is efficient
∆T,� → 0 for � ≥ 2

The Boltzmann hierarchy reduces to the equations of 
hydrodynamics

∆P,� → 0



Neutrinos

Equations of motion

Just like the Boltzmann equations for the photons, it is useful to decompose

∆(S)
ν (q, µ, t) into multipole moments according to
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In terms of these, the Boltzmann equation for ∆(S)
ν gives rise to the Boltzmann
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To write down the Einstein equations, we will again need the fluctuations of

the stress-energy tensor in terms of the multipole moments. For the neutrinos,

they are given by

δρν q = ρν∆
(S)
ν,0 , (2.3.121)
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q2πS
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(S)
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For the neutrinos, we only need the low multipole moments. The truncation

of the Boltzmann hierarchy is thus sufficient, and no line of sight integral is

needed to calculate the higher multipole moments. This is what is done in the

numerical codes like CMBfast [82]15 and CAMB [83].16

One can in this case, however use the line of sight solution instead of

the Boltzmann hierarchy. This was used in some codes used to generate results

15http://www.cfa.harvard.edu/~mzaldarr/CMBFAST/cmbfast.html
16http://camb.info/.
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Baryons

the time dependence of the quantities that enter in the calculation of the

transfer functions. The source functions, metric perturbations, and velocity

potential are obtained by integrating the truncated Boltzmann hierarchies for

photons, equations (2.3.76) and (2.3.76) and neutrinos, equations (2.3.120)

along with two conveniently chosen linear combinations of equations (2.3.22),

(2.3.23), (2.3.24) and (2.3.25) for the metric components. Where they ap-

pear, the fluctuations in the energy density, pressure, velocity potential, and

the anisotropic stress for the photons are expressed in terms of the multipole

coefficients using equations (2.3.79), (2.3.80), (2.3.81), and (2.3.82); those for

neutrinos are expressed in terms of the corresponding multipole coefficients

using equations (2.3.121), (2.3.122), (2.3.123), and (2.3.124). The fluctuations

in energy density, pressure, velocity potential, and anisotropic inertia for the

remaining constituents are determined from their equations of motion. To

be specific, for the ΛCDM model, the missing equations are those governing

the evolution of the baryons and the dark matter particles. In the particular

synchronous gauge in which the velocity potential for the cold dark matter

vanishes, energy conservation for the cold dark matter perturbations takes the

form

δρ̇c q +
3ȧ

a
δρc q +

1

2
ρc q

�
3Ȧq − q2Ḃq

�
= 0 , (2.3.150)

while energy conservation for the baryons gives

δρ̇b q +
3ȧ

a
δρb q −

q2

a2
ρbδub q +

1

2
ρb

�
3Ȧq − q2Ḃq

�
= 0 . (2.3.151)

While the exchange of energy between the baryons and the photons due to

scattering is negligible and energy is conserved separately for baryons and

photons, momentum is exchanged efficiently between electrons and photons.
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The equation corresponding to momentum conservation in the plasma is17

δu̇b q +
4

3

ργ

ρb

ωc(t)

�
δub q +

3

4

a

q
∆(S)

T,1(q, t)

�
= 0 , (2.3.152)

where we have used equations (2.3.80), (2.3.82), and (2.3.81) to write the

perturbations in the pressure and velocity potential for the photons as well as

the anisotropic stress in terms of the multipole coefficients, equation (2.3.76)

for � = 1 to eliminate ∆̇(S)
T,1(q, t). Finally, we can use equations (2.3.22) and

(2.3.23) for the metric components. For the ΛCDM model, these are
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�
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and

Ȧq = 8πG

�
ρbδub q −
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q
ργ∆

(S)
T,1(q, t)−

a

q
ρν∆

(S)
ν,1 (q, t)

�
. (2.3.154)

These equations of motion are a closed set and can be solved numeri-

cally for any choice of initial conditions. What remains is to specify the initial

conditions for adiabatic perturbations. They can be found by solving this sys-

tem of equations far outside the horizon in the radiation dominated era. At

early times, Thomson scattering is very efficient, and it can be seen from the

Boltzmann hierarchy (2.3.76), (2.3.76) that it drives the temperature multi-

pole moments ∆(S)
T,�(q, t) for � ≥ 2 as well as all polarization multipole moments

∆(S)
P,�(q, t) to zero. In this limit, one can look for a solution of the remaining

system of equations of the form

∆(S)
T,0 = ∆(S)

ν,0 =
4

3

δρc

ρc

=
4

3

δρb

ρb

≡ ∆(S)
0 , (2.3.155)

17We have dropped the perturbation in the baryon pressure as in [38]. This term is kept
in CMBfast and CAMB, but turns out to be negligible for wavelengths observable in the
CMB. It is important at shorter scales and should be included for an accurate calculation
of the matter power spectrum.
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Energy conservation

Momentum conservation



Dark Matter

Equations of motion

the time dependence of the quantities that enter in the calculation of the

transfer functions. The source functions, metric perturbations, and velocity

potential are obtained by integrating the truncated Boltzmann hierarchies for

photons, equations (2.3.76) and (2.3.76) and neutrinos, equations (2.3.120)

along with two conveniently chosen linear combinations of equations (2.3.22),

(2.3.23), (2.3.24) and (2.3.25) for the metric components. Where they ap-
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the anisotropic stress for the photons are expressed in terms of the multipole

coefficients using equations (2.3.79), (2.3.80), (2.3.81), and (2.3.82); those for

neutrinos are expressed in terms of the corresponding multipole coefficients

using equations (2.3.121), (2.3.122), (2.3.123), and (2.3.124). The fluctuations

in energy density, pressure, velocity potential, and anisotropic inertia for the

remaining constituents are determined from their equations of motion. To

be specific, for the ΛCDM model, the missing equations are those governing

the evolution of the baryons and the dark matter particles. In the particular

synchronous gauge in which the velocity potential for the cold dark matter

vanishes, energy conservation for the cold dark matter perturbations takes the

form
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While the exchange of energy between the baryons and the photons due to

scattering is negligible and energy is conserved separately for baryons and

photons, momentum is exchanged efficiently between electrons and photons.
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Scalar metric perturbations

The equation corresponding to momentum conservation in the plasma is17
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where we have used equations (2.3.80), (2.3.82), and (2.3.81) to write the

perturbations in the pressure and velocity potential for the photons as well as

the anisotropic stress in terms of the multipole coefficients, equation (2.3.76)

for � = 1 to eliminate ∆̇(S)
T,1(q, t). Finally, we can use equations (2.3.22) and

(2.3.23) for the metric components. For the ΛCDM model, these are
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These equations of motion are a closed set and can be solved numeri-

cally for any choice of initial conditions. What remains is to specify the initial

conditions for adiabatic perturbations. They can be found by solving this sys-

tem of equations far outside the horizon in the radiation dominated era. At

early times, Thomson scattering is very efficient, and it can be seen from the

Boltzmann hierarchy (2.3.76), (2.3.76) that it drives the temperature multi-

pole moments ∆(S)
T,�(q, t) for � ≥ 2 as well as all polarization multipole moments

∆(S)
P,�(q, t) to zero. In this limit, one can look for a solution of the remaining

system of equations of the form
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T,0 = ∆(S)

ν,0 =
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=
4

3

δρb

ρb
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17We have dropped the perturbation in the baryon pressure as in [38]. This term is kept
in CMBfast and CAMB, but turns out to be negligible for wavelengths observable in the
CMB. It is important at shorter scales and should be included for an accurate calculation
of the matter power spectrum.
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perturbations in the pressure and velocity potential for the photons as well as

the anisotropic stress in terms of the multipole coefficients, equation (2.3.76)

for � = 1 to eliminate ∆̇(S)
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These equations of motion are a closed set and can be solved numeri-

cally for any choice of initial conditions. What remains is to specify the initial

conditions for adiabatic perturbations. They can be found by solving this sys-

tem of equations far outside the horizon in the radiation dominated era. At

early times, Thomson scattering is very efficient, and it can be seen from the

Boltzmann hierarchy (2.3.76), (2.3.76) that it drives the temperature multi-

pole moments ∆(S)
T,�(q, t) for � ≥ 2 as well as all polarization multipole moments
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P,�(q, t) to zero. In this limit, one can look for a solution of the remaining

system of equations of the form
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=
4

3

δρb

ρb

≡ ∆(S)
0 , (2.3.155)

17We have dropped the perturbation in the baryon pressure as in [38]. This term is kept
in CMBfast and CAMB, but turns out to be negligible for wavelengths observable in the
CMB. It is important at shorter scales and should be included for an accurate calculation
of the matter power spectrum.
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What remains is the choice of initial conditions



At early times the Boltzmann hierarchy for photons 
reduces to the equations of hydrodynamics

The equation corresponding to momentum conservation in the plasma is17
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These equations of motion are a closed set and can be solved numeri-

cally for any choice of initial conditions. What remains is to specify the initial

conditions for adiabatic perturbations. They can be found by solving this sys-

tem of equations far outside the horizon in the radiation dominated era. At

early times, Thomson scattering is very efficient, and it can be seen from the

Boltzmann hierarchy (2.3.76), (2.3.76) that it drives the temperature multi-

pole moments ∆(S)
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17We have dropped the perturbation in the baryon pressure as in [38]. This term is kept
in CMBfast and CAMB, but turns out to be negligible for wavelengths observable in the
CMB. It is important at shorter scales and should be included for an accurate calculation
of the matter power spectrum.
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This suggests we can look for a solution of the form

and

∆(S)
ν,1 ∝ ∆(S)

T,1 = −4

3

q

a
δub q ≡ ∆(S)

1 . (2.3.156)

Choosing the normalization such that the quantity Rq outside the horizon

approaches the constant Ro
q the initial conditions for the growing adiabatic

mode to leading order in q/aH are given by
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a2(t)
Ro

q , (2.3.161)

(2.3.162)

where fν is the fraction of the radiation energy density stored in neutrinos

fν =
ρν

(ργ + ρν)
=

Nν(7/8) (4/11)4/3

1 + Nν(7/8) (4/11)4/3
, (2.3.163)

with Nν the number of light neutrino species, which we take to be Nν = 3 in

agreement with particle physics, and ∆(S)
ν,1 is related to ∆(S)

1 by

∆(S)
ν,1 (q, t) =

23 + 4fν

15 + 4fν
∆(S)

1 (q, t) . (2.3.164)

The higher neutrino multipole moments are not being driven to zero, but they

are higher order in q/aH and can be set to zero initially.

In practice, it may be advantageous not to start the integration too

far in the radiation dominated era to keep the integration time as short as
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These are adiabatic initial conditions

Initial Conditions



In this limit                           becomes a constant
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are higher order in q/aH and can be set to zero initially.
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far in the radiation dominated era to keep the integration time as short as
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Rq =
Aq

2
+Hδuq

and we can normalize our solution such that Rq → Ro
q

Then during radiation domination

and

∆(S)
ν,1 ∝ ∆(S)

T,1 = −4

3

q

a
δub q ≡ ∆(S)

1 . (2.3.156)

Choosing the normalization such that the quantity Rq outside the horizon

approaches the constant Ro
q the initial conditions for the growing adiabatic

mode to leading order in q/aH are given by

∆(S)
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4

3

q
2
t
2

a2(t)
Ro

q , (2.3.157)

∆(S)
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Ro

q , (2.3.158)
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Ro
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q
2
t
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a2(t)

�
Ro

q , (2.3.160)
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q
2
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a2(t)
Ro
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(2.3.162)

where fν is the fraction of the radiation energy density stored in neutrinos

fν =
ρν

(ργ + ρν)
=

Nν(7/8) (4/11)4/3

1 + Nν(7/8) (4/11)4/3
, (2.3.163)

with Nν the number of light neutrino species, which we take to be Nν = 3 in

agreement with particle physics, and ∆(S)
ν,1 is related to ∆(S)

1 by

∆(S)
ν,1 (q, t) =

23 + 4fν

15 + 4fν
∆(S)

1 (q, t) . (2.3.164)

The higher neutrino multipole moments are not being driven to zero, but they

are higher order in q/aH and can be set to zero initially.

In practice, it may be advantageous not to start the integration too

far in the radiation dominated era to keep the integration time as short as
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Initial Conditions

These are the equations and initial conditions used by the 
Boltzmann codes such as CAMB or CLASS.

Though somewhat tedious, using the line of sight solutions (2.3.86), (2.3.87)

for ∆(S)
T (q,−q̂ · n̂, t0) and ∆(S)

P (q,−q̂ · n̂, t0),the integrals over n̂ can be done

analytically. One finds the following expressions for the coefficients a(S)
T,�m and

a(S)
P,�m:

a(S)
T,�m = πT0i

�

�
d3q α(q)Y m

�
∗
(q̂)∆(S)

T,�(q, t0) , (2.3.140)

a(S)
P,�m = −πT0i

�

�
d3q α(q)Y m

�
∗
(q̂)∆(S)

E,�(q, t0) . (2.3.141)

(2.3.142)

The quantities ∆(S)
T,�(q, t0) and ∆(S)

E,�(q, t0) are sometimes referred to as transfer

functions and are given by

∆(S)
T,�(q, t0) =

t0�

t1

dt P (t)

×
��

3Φ(q, t)− 2a(t)
d

dt

�
a(t)Ḃq(t)

�
+

3

4
Π(q, t)

�
j�(qr(t))

−4q
�
δuq(t)/a(t) + a(t)Ḃq(t)/2

�
j�
�(qr(t)) +

3

4
Π(q, t)j��

� (qr(t))

�

−
t0�

t1

dt exp

�
−

� t0

t

ωc(t
�
)dt�

�

× d

dt

�
2Aq(t) + 2a(t)

d

dt

�
a(t)Ḃq(t)

��
j�(qr(t)) , (2.3.143)

∆(S)
E,�(q, t0) =

3

4

�
(� + 2)!

(�− 2)!

t0�

t1

dt
P (t)Π(q, t)

q2r2(t)
j�(qr(t)) . (2.3.144)

For vanishing Stokes parameter V , the dimensionless intensity matrix is real.

Together with the definition of the sources functions (2.3.70), the product of

stochastic parameters and ∆(S)
E,�(q, t0) then satisfies

α(q)
∗∆(S)

E,�(q, t0)
∗

= α(−q)∆(S)
E,�(q, t0) . (2.3.145)
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Combined with the behavior of the spherical harmonics under space inversion

Y m
� (q̂) = (−1)�Y −m ∗

� (−q̂), this implies a∗P,� m = aP,�−m, or equivalently

a(S)
E,� m = −a(S)

P,� m and aB,� m = 0 . (2.3.146)

Using equation (2.3.133), the non-vanishing contributions of the scalar modes

to the multipole coefficients are then given by

C(S)
TT,� = π2T 2

0

�
q2dq

���∆(S)
T,�(q, t0)

���
2

, (2.3.147)

C(S)
TE,� = π2T 2

0

�
q2dq ∆(S)

T,�(q, t0)∆
(S)
E,�(q, t0) , (2.3.148)

C(S)
EE,� = π2T 2

0

�
q2dq

���∆(S)
E,�(q, t0)

���
2

. (2.3.149)

At linear order, the scalar modes thus only contribute to the multipole coef-

ficients, CTT,�, CTE,�, and CEE,�, but not to CBB,�, so that a B-mode signal

would present evidence for vector or tensor modes. There is good evidence

from the observed CTE,� that perturbations are generated early [86], so that

the vector modes would have decayed by now, and a detection of a B-mode

signal would be an indirect detection of gravitational waves. This is somewhat

oversimplified as in the presence of an E-mode signal gravitational lensing will

lead to a B-mode signal. This is an important effect, and at least for � � 100

is expected to be the dominant contribution. Lensing is reasonably well un-

derstood, and it seems to be possible to extract a primordial B-mode signal as

long as the tensor to scalar ratio, which will be introduced in subsections 2.4.2

and 2.4.3, is large enough, roughly r � 0.001− 0.01. We will return to this in

subsection 2.4.3 and explain more carefully what could be learned from such

an observation.

Once the transfer functions are known, we thus know how to obtain

the multipole coefficients. What remains is to give the equations governing
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or directly

With the solution at hand, one computes

similarly for polarization and tensor contribution



From eV to Inflation

C(S)
XX,� = 4πT 2

0

�
dk

k
∆2

R(k)

������

τ0�

0

dτS(S)
X (k, τ)j�(k(τ0 − τ))

������

2



Initial Conditions

Physics of Recombination

Geometry

Late time evolution

C(S)
XX,� = 4πT 2

0

�
dk

k
∆2

R(k)

������

τ0�

0

dτS(S)
X (k, τ)j�(k(τ0 − τ))

������

2

From eV to Inflation



So far, these are initial conditions for the system of 
equations that governs the evolution of the 
universe from around few keV to the present

In this limit, the system has 5 solutions that do not 
decay, one “adiabatic” solution  and 4 “isocurvature” 
solutions. (Bucher et al. 1999)

Experimentally, only the adiabatic solution seems 
excited for which     is constant.

From eV to Inflation

R



a

H

arec

k/a

We can extrapolate backwards very easily at least 
until the temperatures become high enough for 
new degrees of freedom to appear.

From eV to Inflation



Outside the horizon, this adiabatic solution with 
constant     exists not only for the matter content 
present below a few keV, but for a general matter 
content.

To generate the perturbations causally, they cannot
have been outside the horizon very early on. 
This requires a phase with

(Weinberg 2009)

R

(e.g. inflation or bounce)

From eV to Inflation

d

dt

�
q

a|H|

�
< 0



The perturbations are generated as quantum fluctuations
while inside the horizon, and then exit the horizon.

a

H

arec

k/a

From eV to Inflation



There are two cases in which the solution with 
constant     is known to be an attractor: 

• Single field inflation  

• Phase of thermal equilibrium without
  conserved charges.

R

In single field inflation, the anisotropies in the CMB 
directly tell us about the inflationary dynamics!

From eV to Inflation



For standard single field slow-roll inflation, the 
primordial spectrum of scalar perturbations is

with

and

and the 3-pt function too small to be observed.

ns = 1− 4�∗ − 2δ∗

� = − Ḣ

H2 δ =
Ḧ

2HḢ

From eV to Inflation

∆2
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H
2(tq)

8π2�(tq)
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R

�
q

q∗

�ns−1


