

GW2—Propagation, detection, generation

Michele Vallisneri ICTP Summer School on Cosmology 2016

Einstein Gravity in a Nutshell

WILEY SERIES IN COSMOLOGY

Jolien D. E. Creighton, Warren G. Anderson WILEY-VCH

Gravitational-Wave Physics and Astronomy

An Introduction to Theory, Experiment and Data Analysis

NODERN Classical Physics

KIP S. THORNE and ROGER D. BLANDFORD Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics

Things to learn today

- 1. In general relativity, curvature propagates like a wave, at the speed of light
- 2. GWs act as tidal forces in a local Lorentz frame
 OR, equivalently —
 GWs modulate the proper distance between nearby

freely falling particles

- 3. GWs are transverse and quadrupolar
- 4. GWs carry energy-momentum, although it can be localized only approximately
- 5. GWs are emitted by time-dependent mass quadrupoles
- 6. GWs cause the accelerating inspiral of binary stars

Metric theories of gravity: parallel transport

$$ds^{2} \equiv \sum_{A} (dX^{A})^{2} = \sum_{A} \frac{\partial X^{A}}{\partial x^{\mu}} dx^{\mu} \frac{\partial X^{A}}{\partial x^{\nu}} dx^{\nu} \equiv g_{\mu\nu} dx^{\mu} dx^{\nu}$$

 $\partial_{\nu}\vec{W}(x) = \partial_{\nu}(W^{\mu}(x)\vec{e}_{\mu}(x)) = (\partial_{\nu}W^{\mu}(x))\vec{e}_{\mu}(x) + W^{\mu}(x)\partial_{\nu}\vec{e}_{\mu}(x)$ $= (\partial_{\nu}W^{\mu})\vec{e}_{\mu} + W^{\lambda}\Gamma^{\mu}_{\lambda\nu}\vec{e}_{\mu} + W^{\mu}K_{\mu\nu}\vec{n}$ $D_{\nu}\vec{W} \equiv (D_{\nu}W^{\mu})\vec{e}_{\mu}$

$$\Gamma^{\rho}_{\mu\nu}(x) \equiv \frac{1}{2} g^{\rho\sigma}(x) \left(\partial_{\mu} g_{\nu\sigma}(x) + \partial_{\nu} g_{\mu\sigma}(x) - \partial_{\sigma} g_{\mu\nu}(x) \right)$$

$$u^{lpha} = dx^{lpha}/dt$$
 $u^{\mu} \nabla_{\mu} u^{lpha} = 0$

The Riemann tensor

$$R_{\alpha\beta\gamma}{}^{\delta}w^{\gamma} := -(\nabla_{\alpha}\nabla_{\beta} - \nabla_{\beta}\nabla_{\alpha})w^{\delta}$$
$$R_{\alpha\beta\gamma}{}^{\delta} = -\frac{\partial}{\partial x^{\alpha}}\Gamma_{\beta\gamma}{}^{\delta} + \frac{\partial}{\partial x^{\beta}}\Gamma_{\alpha\gamma}{}^{\delta} - \Gamma_{\alpha\mu}{}^{\delta}\Gamma_{\beta\gamma}{}^{\mu} + \Gamma_{\beta\mu}{}^{\delta}\Gamma_{\alpha\gamma}{}^{\mu}$$

The first Bianchi identity and other Riemann symmetries

$$R_{\alpha\beta\gamma}{}^{\delta} + R_{\beta\gamma\alpha}{}^{\delta} + R_{\gamma\alpha\beta}{}^{\delta} = 0$$

$$R_{\alpha\beta\gamma\delta} = -R_{\beta\alpha\gamma\delta} \qquad R_{\alpha\beta\gamma\delta} = -R_{\alpha\beta\delta\gamma}$$
$$R_{\alpha\beta\gamma\delta} = R_{\gamma\delta\alpha\beta}$$

The second Bianchi identity

$$\begin{split} (\delta a^{\alpha})_{\rm top} &= \epsilon^2 R_{\mu\nu\rho}{}^{\nu}(\mathcal{Q}) u^{\mu} v^{\nu} a^{\rho} \\ (\delta a^{\alpha})_{\rm bot} &= -\epsilon^2 R_{\mu\nu\rho}{}^{\lambda}(\mathcal{P}) u^{\mu} v^{\nu} a^{\rho} \\ (\delta a^{\alpha})_{\rm top+bot} &= \epsilon^2 \left[R_{\mu\nu\rho}{}^{\alpha}(\mathcal{Q}) - R_{\mu\nu\rho}{}^{\alpha}(\mathcal{P}) \right] u^{\mu} v^{\nu} a^{\rho} \\ &= \epsilon^3 \left(w^{\sigma} \nabla_{\sigma} R_{\mu\nu\rho}{}^{\alpha} \right) u^{\mu} v^{\nu} a^{\rho} , \end{split}$$

$$0 = (\delta a^{\alpha})_{\text{all faces}}$$

= $\epsilon^{3} \left(\nabla_{\sigma} R_{\mu\nu\rho}{}^{\alpha} + \nabla_{\mu} R_{\nu\sigma\rho}{}^{\alpha} + \nabla_{\nu} R_{\sigma\mu\rho}{}^{\alpha} \right) u^{\mu} v^{\nu} w^{\sigma} a^{\rho}$

Ricci, Ricci, and Einstein

$$R_{\alpha\beta} := R_{\alpha\mu\beta}{}^{\mu} \qquad R := g^{\mu\nu} R_{\mu\nu}$$

$$G_{\alpha\beta} := R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R$$

$$G_{\alpha\beta} = \frac{8\pi G}{c^4} T_{\alpha\beta}$$

Metric perturbation, linearized theory

$$g_{\alpha\beta}=\eta_{\alpha\beta}+h_{\alpha\beta}$$

infinitesimal coordinate transformation

$$\mathbf{x} \rightarrow \mathbf{x}' = \mathbf{x} + \mathbf{\xi} \qquad \mathbf{g}_{\alpha\beta} = \mathbf{g}_{\alpha\beta} - \frac{\partial \xi_{\beta}}{\partial x^{\alpha}} - \frac{\partial \xi_{\alpha}}{\partial x^{\beta}} + O(h^{2})$$

$$\Gamma_{\alpha\beta}^{\gamma} = \frac{1}{2} \eta^{\gamma\delta} \left(\frac{\partial h_{\beta\delta}}{\partial x^{\alpha}} + \frac{\partial h_{\alpha\delta}}{\partial x^{\beta}} - \frac{\partial h_{\alpha\beta}}{\partial x^{\delta}} \right) + O(h^{2})$$

$$R_{\alpha\beta\gamma\delta} = \frac{1}{2} \left(-\frac{\partial^{2} h_{\beta\delta}}{\partial x^{\alpha} \partial x^{\gamma}} + \frac{\partial^{2} h_{\beta\gamma}}{\partial x^{\alpha} \partial x^{\delta}} + \frac{\partial^{2} h_{\alpha\delta}}{\partial x^{\beta} \partial x^{\gamma}} - \frac{\partial^{2} h_{\alpha\gamma}}{\partial x^{\beta} \partial x^{\delta}} \right) + O(h^{2})$$
invariant!

Riemann propagates as a wave

Geodesic deviation

You simply fell, indefinitely, for an indefinite length of time. I went down into the void, to the most absolute bottom conceivable, and once there I saw that the extreme limit must have been much, much farther below, very remote, and I went on falling, to reach it. Since there were no reference points, I had no idea whether my fall was fast or slow. Now that I think about it, there weren't even any proofs that I was really falling: perhaps I had always remained immobile in the same place, or I was moving in an upward direction; since there was no above or below these were only nominal questions and so I might just as well go on thinking I was falling, as I was naturally led to think. Assuming then that one was falling, everyone fell with the same speed and rate of acceleration; in fact we were always more or less on the same level: I, Ursula H'x, Lieutenant Fenimore.

Italo Calvino, "Cosmicomics" (1965)

Geodesic deviation

Gravito-electromagnetism, tendexes, vortexes

$$\Delta a_i = -\mathcal{E}_{ij}\xi^j$$

 $\Delta \Omega_i = \mathcal{B}_{ij} \xi^j$ $\frac{1}{2} \epsilon_{ipq} R^{pq}{}_{j0}$

$$\nabla \cdot \boldsymbol{\mathcal{E}} = 0$$
, $\nabla \cdot \boldsymbol{\mathcal{B}} = 0$, $\frac{\partial \boldsymbol{\mathcal{E}}}{\partial t} - (\nabla \times \boldsymbol{\mathcal{B}})^{\mathrm{S}} = 0$, $\frac{\partial \boldsymbol{\mathcal{B}}}{\partial t} + (\nabla \times \boldsymbol{\mathcal{E}})^{\mathrm{S}} = 0$

Effect on particles (any metric theory)

$$\frac{\partial^2 h_{jk}^{\rm gw}}{\partial t^2} = -2R_{0j0k}$$

$$\delta x^j = \frac{1}{2} h_{jk}^{\rm gw} x^k$$

local inertial frame

$$R_{0j0k}(t-z)$$
plane wave along z

six independent degrees of freedom

Effect on particles (general relativity)

Effect on particles (general relativity)

Quasi-Lorentz TT frame (global!)

compare with proper reference frame
$$ds^{2} = -(1 + R_{j0k0}x^{j}x^{k})dt^{2} - \frac{4}{3}R_{jkl0}x^{k}x^{l}dtdx^{j} + (\delta_{ij} - \frac{1}{3}R_{ijlm}x^{l}x^{m})dx^{i}dx^{j}$$

GW energy-momentum can be defined in a two-lengthscale expansion

GW energy-momentum can be defined in a two-lengthscale expansion

$$\begin{split} T^{\rm GW}_{\alpha\beta} &= -\frac{1}{8\pi} \langle G^{(2)}_{\alpha\beta} \rangle \qquad R_{\alpha\beta} = \frac{\partial \Gamma^{\mu}_{\alpha\beta}}{\partial x^{\mu}} - \frac{\partial \Gamma^{\mu}_{\mu\beta}}{\partial x^{\alpha}} + \Gamma^{\mu}_{\alpha\beta} \Gamma^{\nu}_{\mu\nu} - \Gamma^{\mu}_{\nu\beta} \Gamma^{\nu}_{\alpha\mu} \\ T^{\rm GW}_{\alpha\beta} &= \frac{1}{16\pi} \langle h_{+,\alpha} h_{+,\beta} + h_{\times,\alpha} h_{\times,\beta} \rangle \\ T^{\rm GW\,00} &= T^{\rm GW\,0z} = T^{\rm GW\,z0} = T^{\rm GW\,zz} = \frac{1}{16\pi} \langle \dot{h}^2_+ + \dot{h}^2_\times \rangle \\ T^{\rm GW\,0z} &\simeq \frac{\pi}{4} \frac{c^3}{G} f^2 h^2_{\rm amp} \simeq 300 \frac{\rm ergs}{\rm cm^2 \, sec} \left(\frac{f}{1 \, \rm kHz}\right)^2 \left(\frac{h_{\rm amp}}{10^{-21}}\right)^2 \\ &= 0.3 \, \text{W/m}^2 \end{split}$$

Quadrupole formula for slow-moving, non-selfgravitating system

$$\bar{h}_{\alpha\beta} := h_{\alpha\beta} - \frac{1}{2} \eta_{\alpha\beta} h \qquad \partial \bar{h}^{\mu\alpha} / \partial x^{\mu} = 0$$
Lorenz gauge
$$\Box \bar{h}^{\alpha\beta} = -\frac{16\pi G}{c^4} \tau^{\alpha\beta}$$

$$\bar{h}^{\alpha\beta}(t, \mathbf{x}) = \frac{4G}{c^4} \int \frac{\tau^{\alpha\beta}(t - \|\mathbf{x} - \mathbf{x}'\|/c, \mathbf{x}')}{\|\mathbf{x} - \mathbf{x}'\|} d^3 \mathbf{x}' \qquad \frac{\partial \tau^{\mu\alpha}}{\partial x^{\mu}} = 0$$

$$\tau^{ij} = \frac{1}{2} \frac{\partial^2}{\partial t^2} (x^i x^j \tau^{00})$$

$$\bar{h}^{ij}(t, \mathbf{x}) \simeq \frac{2G}{c^4 r} \frac{\partial^2}{\partial t^2} \int x'^i x'^j \tau^{00} (t - r/c, \mathbf{x}') d^3 \mathbf{x}' \simeq \frac{2G}{c^4 r} \ddot{I}^{ij}(t - r/c)$$

$$h^{TT}_{ij}(t) \simeq \frac{2G}{c^4 r} \ddot{I}^{TT}_{ij}(t - r/c)$$

TRAVELING *AT THE* SPEED *OF* THOUGHT

Einstein and the

Quest for

Gravitational

Waves

DANIEL KENNEFICK

Quadrupole formula for slow-moving, non-selfgravitating system

for a wave propagating along z, computing Riemann shows that the only tidal-field components are $h_{xx} = -h_{yy}$ and h_{xy} ; then we obtain h^{TT} simply by projecting out all other elements

$$h_{ij}^{\mathrm{TT}}(t) \simeq rac{2G}{c^4 r} \ddot{I}_{ij}^{\mathrm{TT}}(t-r/c)$$

Quadrupole formula for slow-moving, weakly/strongly gravitating system

Quadrupole formula for slow-moving, strongly weakly gravitating system

metric very accurately Newtonian in near zone

$$\begin{split} \varPhi &= -\frac{1}{2}c^4 h^{00} = -\frac{1}{4}c^4 \left(\bar{h}^{00} + c^{-2}\delta_{ij}\bar{h}^{ij}\right) & \text{not valid for strongly} \\ &= -G \int \frac{\tau^{00}\left(t, x'\right) + c^{-2}\delta_{ij}\tau^{ij}\left(t, x'\right)}{\|x - x'\|} d^3x' & \text{not valid for strongly} \\ &= -G \left[\frac{M}{r} + \frac{3}{2}\frac{F_{ij}x^ix^j}{r^5} + \cdots\right] & I^{ij} := \int \left(\frac{x^ix^j - \frac{1}{3}r^2\delta^{ij}}{r^2} \tau^{00}(x)d^3x\right) d^3x' \end{split}$$

postulating an outgoing-wave solution in the weak-field region given by

$$\bar{h}_{00} = 2 \left[\frac{\mathcal{I}_{jk}(t-r)}{r} \right]_{,jk} , \quad \bar{h}_{0j} = 2 \left[\frac{\dot{\mathcal{I}}_{jk}(t-r)}{r} \right]_{,k} , \quad \bar{h}_{jk} = 2 \frac{\ddot{\mathcal{I}}_{jk}(t-r)}{r}$$

matches the near-zone metric if quadrupoles match, hence

$$h_{ij}^{\mathrm{TT}}(t) \simeq rac{2G}{c^4 r} \ddot{I}_{ij}^{\mathrm{TT}}(t-r/c)$$

GW emission from binary

$$I_{11} = m_{1}(r_{1}\cos\varphi)^{2} + m_{2}\left[r_{2}\cos(\varphi + \pi)\right]^{2}$$

$$= \mu a^{2}\cos^{2}\varphi = \frac{1}{2}\mu a^{2}(1 + \cos 2\varphi)$$

$$I_{22} = \frac{1}{2}\mu a^{2}(1 - \cos 2\varphi)$$

$$I_{12} = \frac{1}{2}\mu a^{2}\sin 2\varphi$$

$$h_{ij}^{TT}(t) \simeq \frac{2G}{c^{4}r} \vec{I}_{ij}^{TT}(t - r/c)$$

$$\vec{I}_{11} = -2\mu a^{2}\omega^{2}\cos 2\varphi$$

$$h_{+} = -\frac{2G\mu}{c^{2}r}(1 + \cos^{2}\iota)\left(\frac{\nu}{c}\right)^{2}\cos 2\varphi$$

$$\vec{I}_{22} = 2\mu a^{2}\omega^{2}\cos 2\varphi$$

$$h_{\times} = -\frac{4G\mu}{c^{2}r}\cos \iota\left(\frac{\nu}{c}\right)^{2}\sin 2\varphi$$

$$\vec{I}_{12} = \vec{I}_{21} = -2\mu a^{2}\omega^{2}\sin 2\varphi$$

$$\nu = a\omega \quad GM = a^{3}\omega^{2}$$

$$GM\omega = \nu^{3} \quad \nu = (\pi GM f)^{1/3}$$

Adiabatic inspiral

$$\frac{dE}{dtdA} = -\frac{c^3}{16\pi G} \left\langle \dot{h}_+^2 + \dot{h}_\times^2 \right\rangle \qquad L_{\rm GW} = -\frac{dE}{dt} = \frac{1}{5} \frac{G}{c^5} \left\langle \ddot{H}_{ij} \ddot{H}^{ij} \right\rangle = \frac{32}{5} \frac{c^5}{G} \eta^2 \left(\frac{\nu}{c}\right)^{10}$$
$$\eta = \mu/M$$
$$E = \frac{1}{2} m_1 \nu_1^2 + \frac{1}{2} m_2 \nu_2^2 - \frac{G m_1 m_2}{a} = -\frac{1}{2} \mu \nu^2$$

time to coalescence

$$\frac{d(\nu/c)}{dt} = \frac{32\eta}{5} \frac{c^3}{GM} \left(\frac{\nu}{c}\right)^9 \qquad \tau_c = \frac{5}{256\eta} \frac{GM}{c^3} \left(\frac{\pi GM f_0}{c^3}\right)^{-8/3}$$

energy balance

$$\frac{d\varphi}{d\nu} = \frac{d\varphi}{dt}\frac{dt}{d\nu} = -\omega\frac{GM}{c^3}\frac{1}{\mathcal{F}}\frac{d\mathcal{E}}{d\nu} = -\left(\frac{\nu}{c}\right)^3\frac{1}{\mathcal{F}}\frac{d\mathcal{E}}{d\nu} \qquad \qquad L_{GW}(\nu) := \frac{c^5}{G}\mathcal{F}(\nu)$$

$$E(\nu) - Mc^2 =: Mc^2\mathcal{E}(\nu)$$

restricted waveform

$$h_{+}(t(\nu)) = -\frac{2G\mu}{c^{2}r}(1+\cos^{2}\iota)\left(\frac{\nu}{c}\right)^{2}\cos 2\varphi(\nu)$$
$$h_{\times}(t(\nu)) = -\frac{4G\mu}{c^{2}r}\cos\iota\left(\frac{\nu}{c}\right)^{2}\sin 2\varphi(\nu)$$

$$\varphi(\nu) = \varphi_{\rm c} - \frac{1}{32\eta} \left(\frac{\nu}{c}\right)^{-5}$$

3.5PN waveform (circular, adiabatic)

$$\begin{split} \mathcal{E}(x) &= -\frac{1}{2}\eta x \left\{ 1 - \left(\frac{3}{4} + \frac{1}{12}\eta\right) x \\ &- \left(\frac{27}{8} - \frac{19}{8}\eta + \frac{1}{24}\eta^2\right) x^2 \\ &- \left[\frac{675}{64} - \left(\frac{34445}{576} - \frac{205}{96}\pi^2\right)\eta + \frac{155}{96}\eta^2 + \frac{35}{5184}\eta^3\right] x^3 \right\} \\ \mathcal{F}(x) &= \frac{32}{5}\eta^2 x^5 \left\{ 1 - \left(\frac{1247}{336} + \frac{35}{12}\eta\right) x + 4\pi x^{3/2} \\ &- \left(\frac{44711}{9072} - \frac{9271}{504}\eta - \frac{65}{18}\eta^2\right) x^2 - \left(\frac{8191}{672} + \frac{583}{24}\eta\right) \pi x^{5/2} \\ &+ \left[\frac{6\,643\,739\,519}{69\,854\,400} + \frac{16}{3}\pi^2 - \frac{1712}{105}\gamma_{\rm E} - \frac{856}{105}\ln(16x)\right] \end{split}$$

 $+\left(\frac{41}{48}\pi^2-\frac{134\,543}{7776}\right)\eta-\frac{94\,403}{3024}\eta^2-\frac{775}{324}\eta^3\right]x^3$

 $-\left(\frac{16\,285}{504}-\frac{214\,745}{1728}\eta-\frac{193\,385}{3024}\eta^2\right)\pi x^{7/2}\bigg\},\,$

$$\begin{split} \varphi(x) &= \varphi_{\rm c} - \frac{1}{32\eta} x^{-5/2} \left\{ 1 + \left(\frac{3715}{1008} + \frac{55}{12} \eta \right) x - 10\pi x^{3/2} \\ &\left(\frac{15\,293\,365}{1016\,064} + \frac{27\,145}{1008} \eta + \frac{3085}{144} \eta^2 \right) x^2 \\ &+ \left(\frac{38\,645}{1344} - \frac{65}{16} \eta \right) \ln \left(\frac{x}{x_0} \right) \pi x^{5/2} \\ &+ \left[\frac{12\,348\,611\,926\,451}{18\,776\,862\,720} - \frac{160}{3} \pi^2 - \frac{1712}{21} \gamma_{\rm E} - \frac{856}{21} \ln(16x) \\ &+ \left(-\frac{15\,737\,765\,635}{12\,192\,768} + \frac{2255}{48} \pi^2 \right) \eta + \frac{76\,055}{6912} \eta^2 - \frac{127\,825}{5184} \eta^3 \right] x^3 \\ &+ \left(\frac{77\,096\,675}{2\,032\,128} + \frac{378\,515}{12\,096} \eta - \frac{74\,045}{6048} \eta^2 \right) \pi x^{7/2} \right\}. \end{split}$$
 (B.9b)

$$x = v^2$$

Things we learned today

- 1. In general relativity, curvature propagates like a wave, at the speed of light
- 2. GWs act as tidal forces in a local Lorentz frame
 OR, equivalently —
 GWs modulate the proper distance between nearby

freely falling particles

- 3. GWs are transverse and quadrupolar
- 4. GWs carry energy-momentum, although it can be localized only approximately
- 5. GWs are emitted by time-dependent mass quadrupoles
- 6. GWs cause the accelerating inspiral of binary stars