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Things to learn today

. In general relativity, curvature propagates like a wave,
at the speed of light

. GWs act as tidal forces in a local Lorentz frame

— OR, equivalently —
GWs modulate the proper distance between nearby
freely falling particles

3. GWs are transverse and quadrupolar

4. GWs carry energy—-momentum, although it can be

localized only approximately
. GWs are emitted by time-dependent mass quadrupoles

. GWs cause the accelerating inspiral of binary stars



Metric theories of gravity: parallel transport

ds*=") (dx* axAd “8XAd =g, dx"dx"
) Z( )—27x Py x” = g,,dx"dx

s

8, W (x) = 8,(WH(x)é, (x)) = (8, WH(x))é, (x) + W“(x)avé’u(x)
= (0,WH)e,, + W"I‘fv",,, + WHK,,

D,W = (D,WH)é,

1
[0 00) = 2877 (x) (34800 (%) + 0080 () — 580 ())

a — dxa/dt u“Vﬂua = (




The Riemann tensor
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The first Bianchi identity and other Riemann symmetries
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The second Bianchi identity
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Riccl, Riccl, and Einstein
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Invariant!

Metric perturbation, linearized theory
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Riemann propagates as a wave

Rapys =



Geodesic deviation

You simply fell, indefinitely, for an indefinite
length of time. I went down into the void, to the
most absolute bottom conceivable, and once there
[ saw that the extreme limit must have been much,
much farther below, very remote, and I went on
falling, to reach it. Since there were no reference
points, I had no idea whether my fall was fast or
slow. Now that I think about it, there weren't even
any proofs that I was really falling: perhaps I had
always remained immobile in the same place, or I
was moving in an upward direction; since there
was no above or below these were only nominal
questions and so I might just as well go on
thinking I was falling, as I was naturally led to

think. Assuming then that one was falling,
everyone fell with the same speed and rate of
acceleration; in fact we were always more or less on
the same level: I, Ursula H'x, Lieutenant
Fenimore.

Italo Calvino, “Cosmicomics” (1965)



Geodesic deviation
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Gravito-electromagnetism, tendexes, vortexes




Effect on particles (any metric theory)
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Effect on particles (general relativity)
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Effect on particles (general relativity)




Quasi-Lorentz TT frame (global!)

ds® = —dt® + (1 + hy)dx® + (1 — hy)dy? + 2hdzdy + dz?

particles at rest have constant TT coordinates,
but proper distances change
(coordinates are stretched)

compare with proper reference frame
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GW energy-momentum can be defined
in a two-lengthscale expansion
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GW energy-momentum can be defined
in a two-lengthscale expansion
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Quadrupole formula for slow-moving,
non-selfgravitating system
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Quadrupole formula for slow-moving,
non-selfgravitating system

for a wave propagating along z, computing Riemann shows
that the only tidal-field components are hxx = —hyy and hyy;
then we obtain h'T simply by projecting out all other elements
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Quadrupole formula for slow-moving,
weakly/strongly gravitating system

near zone:
Newtonian metric

wave Zone




Quadrupole formula for slow-moving,
strongly Weakly gravitating system

metric very accurately Newtonian in near zone
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GW emission from binary
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Adiabatic inspiral
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3.5PN waveform (circular, adiabatic)
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