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Lecture 1l

Primary Anisotropies (continued)
Beyond primary anisotropies
Measurement of angular power spectrum

Parameter constraints



Equations of motion

To derive the equations of motion for photons,
recall our toy model of perturbations in a thermal
gas of free massless particles in flat space.

The phase space density of the gas satisfies the
collisionless Boltzmann equation

on A

If we have a detector that registers particles of all
energies, it is natural to define
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Equations of motion

Toy example:

It satisfies

aAT(faﬁa t)
ot

Translational invariance makes it convenient to look for
solutions
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Equations of motion
Toy example:

If we are interested in multipole coefficients ar ¢,
and angular power spectra, it is convenient to decompose
them as

Ar(g, pt) =D (=) (20 + 1) Po(p) Are(q, 1)
14

o [ dq .
orim =it [ G0 (@Yin@)Ara



Equations of motion

Toy example:

Then

Crre=m / 1 |AT€ Q7t0)‘
0

Where At ¢(q,t) satisfy

q
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[(f + 1)AT,g_|_1(q, t) — KAT,g_1<q, t)] = 0

Analogous equations can be derived for the polarization
anisotropy.



Equations of motion

Beyond the toy example

For interacting particles one finds

OAT(q, p,t .
ngt 0 +iquAr (g, p, 1) = —wAr(q, 1, t) + wF [Aro(g, 1), Ar2(g, 1), 1]

with formal solution
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Since only low multipoles appear in the collision terms,

one can solve a truncation of the hierarchy and obtain the
higher multipoles through this “line-of-sight integration™



Equations of motion

Beyond the toy example

The same derivation generalizes to a general spacetime

In this case define the phase space density
7p27 ZCS:C _ZE ( p’t’l“(t))

The definition of momentum and the geodesic equation imply
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Derivation of the Boltzmann hierarchy as before but more
tedious.
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Equations of motion

Photons
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with source function
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Equations of motion

Photons
A (S q S S
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with source function
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Polarization sourced by temperature quadrupole



Equations of motion

Photons

The components of the stress tensor can be written as
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At early times when Compton scattering is efficient
Arey—0 for £>2
Ap)g — 0

The Boltzmann hierarchy reduces to the equations of
hydrodynamics



Equations of motion

(Massless) Neutrinos

\ q
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Baryons

Energy conservation
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Momentum conservation
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Equations of motion

Dark Matter

 3a 1 .
Sfeq + —0peq + 5Peq (34, - ¢*B,) =0

Scalar metric perturbations
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Initial Conditions

What remains is the choice of initial conditions

HA
k/a
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All modes are “outside the horizon” at early times.
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Initial Conditions

At early times the Boltzmann hierarchy for photons
reduces to the equations of hydrodynamics and we
can look for solutions of the form

dop. 4
A = AR =32 =2 = A
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AT,g—>O for 622

Ap,g — 0

These are adiabatic initial conditions



Initial Conditions

T A
In this limit R, = 7‘1 + Hdu, becomes a constant

and we can normalize our solution such that R, — 722
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Initial Conditions

These are the equations and initial conditions used by the
Boltzmann codes such as CAMB or CLASS.

With the solution at hand, one computes

] mx* /[ ~ S
o) = nTyit / Pq oY ()AE)(g, to)

or directly
2

S S
Cipy = 7°T5 / q°dq ‘A%}(q, to)
similarly for polarization and tensor contribution

CLASS

the Cosmic Linear Anisotropy Solving System

Code for Anisotropies in the Microwave Background

by Antony Lewis and Anthony Challinor



From eV to Inflation
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From eV to Inflation

Initial Conditions Late time evolution
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Physics of Recombination \

Geometry



From eV to Inflation

So far, these are initial conditions for the system of
equations that governs the evolution of the
universe from around few keV to the present

In this limit, the system has 5 solutions that do not

decay, one “adiabatic” solution and 4 “isocurvature’
(Bucher et al. 1999)

’

solutions.

Experimentally, only the adiabatic solution seems
excited for which R is constant.



From eV to Inflation
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We can extrapolate backwards very easily at least
until the temperatures become high enough for
new degrees of freedom to appear.



From eV to Inflation

Outside the horizon, this adiabatic solution with
constant R exists not only for the matter content
present below a few keV, but for a general matter
content. (Weinberg2009)

To generate the perturbations causally, they cannot
have been outside the horizon very early on.
This requires a phase with

d : :
- (aﬁﬁl\) <0 (e.g. inflation or bounce)



From eV to Inflation

k/a

} >
Qrec a

The perturbations are generated as quantum fluctuations
while inside the horizon, and then exit the horizon.



From eV to Inflation

There are two cases in which the solution with
constant R is known to be an attractor:

* Single field inflation

* Phase of thermal equilibrium without
conserved charges.

In single field inflation, the anisotropies in the CMB
directly tell us about the inflationary dynamics!



From eV to Inflation

For standard single field slow-roll inflation, the
primordial spectrum of scalar perturbations is

AZ () = () a2 <i)ns—1

- 8m2e(ty,) Qs
with ne =1—4e, — 20,
H H
and €= ——— §—
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and the 3-pt function too small to be observed.



Power spectrum measurement
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We know how to compute the theory prediction,
now we need to understand the data points.



Beyond Primary Anisotropies

CMB data consists of sky maps at different microwave

frequencies

COBE (DMR)
(1989-93)

31 GHz

53 GHz

91 GHz



imary Anisotropies
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Beyond Primary Anisotropies

Planck




Beyond Primary Anisotropies

To learn about the CMB this means we must
understand

® Dust

® Synchrotron

We have additional ways to probe cosmology
® Reionization
® Thermal SZ effect
® Kinetic SZ effect
® | ensing of the CMB



Thermal SZ effect

The change in temperature is set by
AT(n) =1y(n) (xcoth(x/2) — 4) T}

hv A kT,
= o7 y(n) = /dl NeOT o

A map of the Compton parameter ¥ is a measure of hot gas in
the universe between us and the surface of last scattering.

X




Thermal SZ effect

SZ view of Abell 2319 with Planck
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Thermal SZ effect

Planck SZ clusters




Thermal SZ effect

Planck thermal SZ power spectrum

—— Best-fit tSZ spectrum
—— Best-fit cluster counts
—— CMB paper - EM12 tSZ template

1Q°

1012 20+ 1)Cy/2m




Lensing

T(?Al) _ Tunlensed (ﬁ + V¢(ﬁ))

* Washes out acoustic peaks in the power spectrum
(this effect is included in all the analyses)

* leads to temperature three-point correlations because of
correlations between ISW and lensing

* |eads to temperature four-point correlations proportional to
power spectrum of lensing field

AT TT ~TT
Tf;fi(L) ~ C?¢C€2 C£4 F51L52F53L54



Lensing

Detected at high significance (400)

[L(L + 1)]2C%° /27 [x107]
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Lensing

The lensing potential itself can also be reconstructed

and provides a map (albeit a noisy one) of (the projection of)
all matter between us and the surface of last scattering!



ldeal measurement
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ldeal measurement

How do we estimate the cosmological parameters
of our favorite model?

Denote the parameters by 0 and the data by D

b
where D could be ajy ., 9P

We would like to know P(6|D)

We cannot compute it directly, but can use Bayes’ theorem

— —

PEID) = “ DN o




ldeal measurement

How do we estimate the cosmological parameters
of our favorite model?

Denote the parameters by 0 and the data by D

b
where D could be ajy ., 9P

We would like to know P(6|D)

We cannot compute it directly, but can use Bayes’ theorem

— —

PEID) = “ DN o

This suggests to define a likelihood for our experiment

—

L(9) = P(D|6)

which can be computed for any given theory



ldeal measurement

Warm up: Measurement of temperature anisotropies

For Gaussian perturbations

*k
<a/£ ma/E/ m/> — ngﬁg’ 5mm/

1 \angQ
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ldeal measurement

Warm up: Measurement of temperature anisotropies

For Gaussian perturbations

k
<a/£ maE/ m/> — 065,6,6/ 5mm/
and

P(a,g ) _ 1 exp _Z ‘afﬁmb
m ( 7'('06) 2£—|—1 QCE
So the exact likelihood is
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ldeal measurement

For a measurement including polarization

Define AYm — (aT,em,aE75m,aB7€m)

Then <agmaz, mr) = Cr0ppr O

Crre CrEy 0
with Cy)= CTE,g CEE,g 0
0 0 CBBy

Then the exact likelihood is

1 obs

/ (27T det Cy

or
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) ST €XP trCy;>°C,
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Adding Real World Effects

In realistic measurements, we have to incorporate

® Noise of the experiment
® Finite resolution of the experiment
® Pixelization of maps

® Masks



Adding Real World Effects

In realistic measurements, we have to incorporate

® Noise of the experiment
® Finite resolution of the experiment
® Pixelization of maps

® Masks

Notice that these likelihoods are Gaussian in terms

obs

of a?>% but not in terms of C"

Incorporating these effects is thus easy in map space
where the likelihoods are Gaussian



Adding Real World Effects

Pixel space likelihood

observed pixels / Noise covariance matrix

Pixel covariance for signal

The probability distribution for the AT} is

1 1
P(AT;) = exp | —= ) AT;(C+ N) AT
( ) (QW)Npix/Q\/det(C n N) p ( 2 %: ( ) J j)



Adding Real World Effects

Pixel space likelihood

So the exact likelihood in pixel space is

_ 1 ex _1 obs —1 obs
£O) = T e G TN p( 2%:ATZ (C(6) + N);,'AT! )

This easily extends to polarization



Adding Real World Effects

Pixel space likelihood

So the exact likelihood in pixel space is

_ 1 ex _1 obs —1 obs
L£(0) = )Nl Jae GO T p ( 5 > AT (C(0) + N) AT )

]

This easily extends to polarization

Unfortunately evaluating such likelihoods is prohibitively

expensive for high resolution full sky experiments such as
WMAP or Planck.

To make progress, one uses approximations for the
likelihoods based on the C"®



Adding Real World Effects
Pseudo-C; likelihood

One (of many) approximations is a fiducial Gaussian
approximation

1 1
x exp |—=(C°™ — C(6))"Cay (C°™ — C(0
T P 3O~ Cw G e o)
with covariance matrix Czq = (CC")evaluated for some

fiducial cosmology close to the true cosmology.

L(6)

The covariance matrix can be computed analytically even for
masked maps and in the presence of noise



Adding Real World Effects

Spectra and covariance for pseudo-C) likelihood

For masked sky maps

ATY = Wi (AT + N}
we have multipole coefficients

i = ) UATY, (77)
and pseudo-spectra i

~a 1 ~a ~bx
C{’ = %—Hzaﬁmagm

m

These are related to the underlying power spectra by

(Ci") = D My (pubiy?*(C3') + N}
6/



Adding Real World Effects

Spectra and covariance for pseudo-C) likelihood

For masked sky maps

ATY = Wi (AT + N}
we have multipole coefficients

i = ) UATY, (77)
and pseudo-spectra i

~a 1 ~a ~bx
C{’ = %—Hzaﬁmalgm

m

These are related to the underlying power spectra by

(C%) =D Mi(pe bz@> + Ny
y beam

mode coupling matrix pixel window function



Adding Real World Effects

Spectra and covariance for pseudo-C) likelihood

Their covariance matrix is

(ACPPACH) = \/CoeCriceCit Z(e, ¢, WD) 4\ [eoiciecgicts (e, ¢, We90)

+ B0 W) + 20, WE0)
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wab _ Z QZZWia2O_;z25ab)/é;1 (ﬁ,2> .

o fm
bdx
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Adding Real World Effects

Hybrid likelihoods

Pixel based likelihoods are exact but prohibitively expensive
for full sky, high resolution experiments

Pseudo-C/ likelihood only accurate for high enough multipoles
as the Cyobey a X-square distribution with 2/ + 1 degrees of

freedom

This suggests using a hybrid likelihood consisting of a pixel
based likelihood on large scales and a pseudo-CY likelihood

on small scales



Parameter estimation

To find the likelihood as function of our parameters, we
could evaluate it on a grid.

Since the likelihoods are typically costly to evaluate
and especially for higher dimensional parameter spaces
this is too time consuming.

We sample them using Markov Chain Monte Carlo
methods instead.



Parameter estimation

To find the likelihood as function of our parameters, we

could evaluate it on a grid.

Since the likelihoods are typically costly to evaluate
and especially for higher dimensional parameter spaces

this is too time consuming.

We sample them using Markov Chain Monte Carlo

methods instead.

Cosmological MonteCarlo
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but other tools exist =
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Parameter estimation

Metropolis-Hastings

® Choose a starting point in parameter space and
compute £L(6o)

® Pick a randomly chosen second point and
compute € = L(01)/L(0o)

® |f ¢> 1 keep the point, if ¢ < 1keep with
probability ¢

® Repeat

With some additional work this will generate
random points drawn from £(9), which can be used
to find best-fits, means, error bars...



