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Lecture III

• Primary Anisotropies (continued)

• Beyond primary anisotropies

• Measurement of angular power spectrum

• Parameter constraints



Equations of motion

To derive the equations of motion for photons, 
recall our toy model of perturbations in a thermal 
gas of free massless particles in flat space. 

The phase space density of the gas satisfies the 
collisionless Boltzmann equation

∂n

∂t
= −p̂ ·∇n

If we have a detector that registers particles of all 
energies, it is natural to define

∆T (�x, p̂) =
1

Ī

�
p3dp

(2π)3
δn(�x, p p̂)



Equations of motion

Toy example: 

It satisfies

∂∆T (�x, p̂, t)

∂t
+ p̂ ·∇∆T (�x, p̂, t) = 0

Translational invariance makes it convenient to look for 
solutions

q̂ · p̂
∂∆T (q, µ, t)

∂t
+ iqµ∆T (q, µ, t) = 0

∆T (�x, p̂, t) =

�
d3q

(2π)3
α(�q)∆T (q, µ, t)e

i�q·�x



Equations of motion

Toy example: 

If we are interested in multipole coefficients
and angular power spectra, it is convenient to decompose 
them as

aT,�m = πi�
�

d3q

(2π)3
α(�q)Y ∗

�m(q̂)∆T,�(q, t0)

aT,�m

∆T (q, µ, t) =
�

�

(−i)�(2�+ 1)P�(µ)∆T,�(q, t)



Equations of motion

Toy example: 

Where                satisfy

∆̇T,�(q, t) +
q

2�+ 1
[(�+ 1)∆T,�+1(q, t)− �∆T,�−1(q, t)] = 0

Analogous equations can be derived for the polarization 
anisotropy.

CTT � = π2

∞�

0

q2dq

(2π)3
|∆T,�(q, t0)|2

Then

∆T,�(q, t)



Equations of motion

Beyond the toy example

For interacting particles one finds

with formal solution

+ω

t�

ti

dte−iqµ(t−t�)e−ω(t−t�)F [∆T,0(q, t),∆T,2(q, t), t]

∆T (q, µ, t) = ∆T (q, µ, ti)e
−iqµ(t−ti)e−ω(t−ti)

Since only low multipoles appear in the collision terms, 
one can solve a truncation of the hierarchy and obtain the 
higher multipoles through this “line-of-sight integration”

∂∆T (q, µ, t)

∂t
+ iqµ∆T (q, µ, t) = −ω∆T (q, µ, t) + ωF [∆T,0(q, t),∆T,2(q, t), t]



The same derivation generalizes to a general spacetime 

dxi

dt
=

pi

p0
dpi
dt

=
pkpl

2p0
∂gkl
∂xi

Beyond the toy example

and

The definition of momentum and the geodesic equation imply

Equations of motion

∂n

∂t
+

pk

p0
∂n

∂xk
+

1

2

pkpl

p0
∂gkl

∂xm

∂n

∂pm
= C

In this case define the phase space density

n(xi, pi, t) ≡
�

r

δ(xi − xi
r(t))δ(pi − pi r(t))

Derivation of the Boltzmann hierarchy as before but more 
tedious.



Photons

Equations of motion

with source function

∆̇(S)
P,�(q, t) +

q

a(2�+ 1)

�
(�+ 1)∆(S)

P,�+1(q, t)− �∆(S)
P,�−1(q, t)

�

= −ωc(t)∆
(S)
P,�(q, t) +

1

2
ωc(t)Π(q, t)

�
δ�,0 +

1

5
δ�,2

�

∆̇(S)
T,�(q, t) +

q

a(2�+ 1)

�
(�+ 1)∆(S)

T,�+1(q, t)− �∆(S)
T,�−1(q, t)

�

= −ωc(t)∆
(S)
T,�(q, t)− 2Ȧqδ�,0 + 2q2Ḃq

�
1

3
δ�,0 −

2

15
δ�,2

�

The source functions Φ and Π can also be expressed in terms of these multipole

coefficients

Φ =
1

6

�
2∆(S)

T,0 −∆(S)
T,2 −∆(S)

P,0 −∆(S)
P,2

�
, (2.3.77)

Π = ∆(S)
P,0 + ∆(S)

T,2 + ∆(S)
P,2 . (2.3.78)

To turn this into a closed system, one thus only needs to know the metric

components appearing in these equations as well as the velocity potential.

Their time evolution is of course governed by the Einstein equations, and we

give the complete system of equations in the next subsection. To do this, we

will also need to know the components of the stress-energy tensor in terms of

the multipole moments. Using equations (2.3.16), (2.3.32), and (2.3.69), one

finds

δργ q = ργ∆
(S)
T,0 , (2.3.79)

δpγ q =
ργ

3

�
∆(S)

T,0 + ∆(S)
T,2

�
, (2.3.80)

δuγ q = −3

4

a

q
∆(S)

T,1 , (2.3.81)

q2πS
γ q = ργ∆

(S)
T,2 . (2.3.82)

Another way to find a somewhat formal solution to the coupled Boltz-

mann equations for ∆(S)
T and ∆(S)

P is to treat the system as an inhomogeneous

system of ordinary differential equations and solve it as if the sources were

known. This solution is commonly referred to as integrating the equations

44

+ωc∆
(S)
T,0δ�,0 +

1

10
ωcΠδ�,2 −

4

3

q

a
ωcδub qδ�,1



Photons

Equations of motion

with source function
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Polarization sourced by temperature quadrupole

+ωc∆
(S)
T,0δ�,0 +

1

10
ωcΠδ�,2 −

4

3

q

a
ωcδub qδ�,1



The source functions Φ and Π can also be expressed in terms of these multipole

coefficients
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1

6
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Equations of motion

Photons
The components of the stress tensor can be written as

At early times when Compton scattering is efficient
∆T,� → 0 for � ≥ 2

The Boltzmann hierarchy reduces to the equations of 
hydrodynamics

∆P,� → 0



(Massless) Neutrinos

Equations of motion

Just like the Boltzmann equations for the photons, it is useful to decompose

∆(S)
ν (q, µ, t) into multipole moments according to

∆(S)
ν (q, µ, t) =

∞�

�=0

(−i)�
(2� + 1)P�(µ)∆(S)

ν,� (q, t) . (2.3.119)

In terms of these, the Boltzmann equation for ∆(S)
ν gives rise to the Boltzmann

hierarchy for ∆(S)
ν,�

∆̇(S)
ν,� (q, t) +

q

a(2� + 1)

�
(� + 1)∆(S)

ν,�+1(q, t)− �∆(S)
ν,�−1(q, t)

�
=

− 2Ȧqδ�,0 + 2q2Ḃq

�
1

3
δ�,0 −

2

15
δ�,2

�
. (2.3.120)

To write down the Einstein equations, we will again need the fluctuations of

the stress-energy tensor in terms of the multipole moments. For the neutrinos,

they are given by

δρν q = ρν∆
(S)
ν,0 , (2.3.121)

δpν q =
ρν

3

�
∆(S)

ν,0 + ∆(S)
ν,2

�
, (2.3.122)

δuν q = −3

4

a

q
∆(S)

ν,1 , (2.3.123)

q2πS
ν q = ρν∆

(S)
ν,2 . (2.3.124)

For the neutrinos, we only need the low multipole moments. The truncation

of the Boltzmann hierarchy is thus sufficient, and no line of sight integral is

needed to calculate the higher multipole moments. This is what is done in the

numerical codes like CMBfast [82]15 and CAMB [83].16

One can in this case, however use the line of sight solution instead of

the Boltzmann hierarchy. This was used in some codes used to generate results

15http://www.cfa.harvard.edu/~mzaldarr/CMBFAST/cmbfast.html
16http://camb.info/.
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Baryons

the time dependence of the quantities that enter in the calculation of the

transfer functions. The source functions, metric perturbations, and velocity

potential are obtained by integrating the truncated Boltzmann hierarchies for

photons, equations (2.3.76) and (2.3.76) and neutrinos, equations (2.3.120)

along with two conveniently chosen linear combinations of equations (2.3.22),

(2.3.23), (2.3.24) and (2.3.25) for the metric components. Where they ap-

pear, the fluctuations in the energy density, pressure, velocity potential, and

the anisotropic stress for the photons are expressed in terms of the multipole

coefficients using equations (2.3.79), (2.3.80), (2.3.81), and (2.3.82); those for

neutrinos are expressed in terms of the corresponding multipole coefficients

using equations (2.3.121), (2.3.122), (2.3.123), and (2.3.124). The fluctuations

in energy density, pressure, velocity potential, and anisotropic inertia for the

remaining constituents are determined from their equations of motion. To

be specific, for the ΛCDM model, the missing equations are those governing

the evolution of the baryons and the dark matter particles. In the particular

synchronous gauge in which the velocity potential for the cold dark matter

vanishes, energy conservation for the cold dark matter perturbations takes the

form

δρ̇c q +
3ȧ

a
δρc q +

1

2
ρc q

�
3Ȧq − q2Ḃq

�
= 0 , (2.3.150)

while energy conservation for the baryons gives

δρ̇b q +
3ȧ

a
δρb q −

q2

a2
ρbδub q +

1

2
ρb

�
3Ȧq − q2Ḃq

�
= 0 . (2.3.151)

While the exchange of energy between the baryons and the photons due to

scattering is negligible and energy is conserved separately for baryons and

photons, momentum is exchanged efficiently between electrons and photons.
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The equation corresponding to momentum conservation in the plasma is17

δu̇b q +
4

3

ργ

ρb

ωc(t)

�
δub q +

3

4

a

q
∆(S)

T,1(q, t)

�
= 0 , (2.3.152)

where we have used equations (2.3.80), (2.3.82), and (2.3.81) to write the

perturbations in the pressure and velocity potential for the photons as well as

the anisotropic stress in terms of the multipole coefficients, equation (2.3.76)

for � = 1 to eliminate ∆̇(S)
T,1(q, t). Finally, we can use equations (2.3.22) and

(2.3.23) for the metric components. For the ΛCDM model, these are

q2

a2
Aq+

ȧ

a

�
3Ȧq − q2Ḃq

�
= 8πG

�
δρq b + δρq c + ργ∆

(S)
T,0 + ρν∆

(S)
ν,0

�
, (2.3.153)

and

Ȧq = 8πG

�
ρbδub q −

a

q
ργ∆

(S)
T,1(q, t)−

a

q
ρν∆

(S)
ν,1 (q, t)

�
. (2.3.154)

These equations of motion are a closed set and can be solved numeri-

cally for any choice of initial conditions. What remains is to specify the initial

conditions for adiabatic perturbations. They can be found by solving this sys-

tem of equations far outside the horizon in the radiation dominated era. At

early times, Thomson scattering is very efficient, and it can be seen from the

Boltzmann hierarchy (2.3.76), (2.3.76) that it drives the temperature multi-

pole moments ∆(S)
T,�(q, t) for � ≥ 2 as well as all polarization multipole moments

∆(S)
P,�(q, t) to zero. In this limit, one can look for a solution of the remaining

system of equations of the form

∆(S)
T,0 = ∆(S)

ν,0 =
4

3

δρc

ρc

=
4

3

δρb

ρb

≡ ∆(S)
0 , (2.3.155)

17We have dropped the perturbation in the baryon pressure as in [38]. This term is kept
in CMBfast and CAMB, but turns out to be negligible for wavelengths observable in the
CMB. It is important at shorter scales and should be included for an accurate calculation
of the matter power spectrum.
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Energy conservation

Momentum conservation



Dark Matter

Equations of motion

the time dependence of the quantities that enter in the calculation of the

transfer functions. The source functions, metric perturbations, and velocity

potential are obtained by integrating the truncated Boltzmann hierarchies for

photons, equations (2.3.76) and (2.3.76) and neutrinos, equations (2.3.120)

along with two conveniently chosen linear combinations of equations (2.3.22),

(2.3.23), (2.3.24) and (2.3.25) for the metric components. Where they ap-

pear, the fluctuations in the energy density, pressure, velocity potential, and

the anisotropic stress for the photons are expressed in terms of the multipole

coefficients using equations (2.3.79), (2.3.80), (2.3.81), and (2.3.82); those for

neutrinos are expressed in terms of the corresponding multipole coefficients

using equations (2.3.121), (2.3.122), (2.3.123), and (2.3.124). The fluctuations

in energy density, pressure, velocity potential, and anisotropic inertia for the

remaining constituents are determined from their equations of motion. To

be specific, for the ΛCDM model, the missing equations are those governing

the evolution of the baryons and the dark matter particles. In the particular

synchronous gauge in which the velocity potential for the cold dark matter

vanishes, energy conservation for the cold dark matter perturbations takes the

form

δρ̇c q +
3ȧ

a
δρc q +

1

2
ρc q

�
3Ȧq − q2Ḃq

�
= 0 , (2.3.150)

while energy conservation for the baryons gives

δρ̇b q +
3ȧ

a
δρb q −

q2

a2
ρbδub q +

1

2
ρb

�
3Ȧq − q2Ḃq

�
= 0 . (2.3.151)

While the exchange of energy between the baryons and the photons due to

scattering is negligible and energy is conserved separately for baryons and

photons, momentum is exchanged efficiently between electrons and photons.

59

Scalar metric perturbations

The equation corresponding to momentum conservation in the plasma is17

δu̇b q +
4

3

ργ

ρb

ωc(t)

�
δub q +

3

4

a

q
∆(S)

T,1(q, t)

�
= 0 , (2.3.152)

where we have used equations (2.3.80), (2.3.82), and (2.3.81) to write the

perturbations in the pressure and velocity potential for the photons as well as

the anisotropic stress in terms of the multipole coefficients, equation (2.3.76)

for � = 1 to eliminate ∆̇(S)
T,1(q, t). Finally, we can use equations (2.3.22) and

(2.3.23) for the metric components. For the ΛCDM model, these are

q2

a2
Aq+

ȧ

a

�
3Ȧq − q2Ḃq

�
= 8πG

�
δρq b + δρq c + ργ∆

(S)
T,0 + ρν∆

(S)
ν,0

�
, (2.3.153)

and

Ȧq = 8πG

�
ρbδub q −

a

q
ργ∆

(S)
T,1(q, t)−

a

q
ρν∆

(S)
ν,1 (q, t)

�
. (2.3.154)

These equations of motion are a closed set and can be solved numeri-

cally for any choice of initial conditions. What remains is to specify the initial

conditions for adiabatic perturbations. They can be found by solving this sys-

tem of equations far outside the horizon in the radiation dominated era. At

early times, Thomson scattering is very efficient, and it can be seen from the

Boltzmann hierarchy (2.3.76), (2.3.76) that it drives the temperature multi-

pole moments ∆(S)
T,�(q, t) for � ≥ 2 as well as all polarization multipole moments

∆(S)
P,�(q, t) to zero. In this limit, one can look for a solution of the remaining

system of equations of the form

∆(S)
T,0 = ∆(S)

ν,0 =
4

3

δρc

ρc

=
4

3

δρb

ρb

≡ ∆(S)
0 , (2.3.155)

17We have dropped the perturbation in the baryon pressure as in [38]. This term is kept
in CMBfast and CAMB, but turns out to be negligible for wavelengths observable in the
CMB. It is important at shorter scales and should be included for an accurate calculation
of the matter power spectrum.
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The equation corresponding to momentum conservation in the plasma is17
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where we have used equations (2.3.80), (2.3.82), and (2.3.81) to write the

perturbations in the pressure and velocity potential for the photons as well as

the anisotropic stress in terms of the multipole coefficients, equation (2.3.76)

for � = 1 to eliminate ∆̇(S)
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(2.3.23) for the metric components. For the ΛCDM model, these are
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�
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These equations of motion are a closed set and can be solved numeri-

cally for any choice of initial conditions. What remains is to specify the initial

conditions for adiabatic perturbations. They can be found by solving this sys-

tem of equations far outside the horizon in the radiation dominated era. At

early times, Thomson scattering is very efficient, and it can be seen from the

Boltzmann hierarchy (2.3.76), (2.3.76) that it drives the temperature multi-

pole moments ∆(S)
T,�(q, t) for � ≥ 2 as well as all polarization multipole moments

∆(S)
P,�(q, t) to zero. In this limit, one can look for a solution of the remaining

system of equations of the form

∆(S)
T,0 = ∆(S)

ν,0 =
4

3

δρc
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=
4

3

δρb

ρb

≡ ∆(S)
0 , (2.3.155)

17We have dropped the perturbation in the baryon pressure as in [38]. This term is kept
in CMBfast and CAMB, but turns out to be negligible for wavelengths observable in the
CMB. It is important at shorter scales and should be included for an accurate calculation
of the matter power spectrum.
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a

H

arec

k/a

Initial Conditions

All modes are “outside the horizon” at early times. 
q

a
� H

What remains is the choice of initial conditions



At early times the Boltzmann hierarchy for photons 
reduces to the equations of hydrodynamics and we 
can look for solutions of the form

The equation corresponding to momentum conservation in the plasma is17
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where we have used equations (2.3.80), (2.3.82), and (2.3.81) to write the

perturbations in the pressure and velocity potential for the photons as well as

the anisotropic stress in terms of the multipole coefficients, equation (2.3.76)

for � = 1 to eliminate ∆̇(S)
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(2.3.23) for the metric components. For the ΛCDM model, these are
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These equations of motion are a closed set and can be solved numeri-

cally for any choice of initial conditions. What remains is to specify the initial

conditions for adiabatic perturbations. They can be found by solving this sys-

tem of equations far outside the horizon in the radiation dominated era. At

early times, Thomson scattering is very efficient, and it can be seen from the

Boltzmann hierarchy (2.3.76), (2.3.76) that it drives the temperature multi-

pole moments ∆(S)
T,�(q, t) for � ≥ 2 as well as all polarization multipole moments

∆(S)
P,�(q, t) to zero. In this limit, one can look for a solution of the remaining

system of equations of the form
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T,0 = ∆(S)

ν,0 =
4

3

δρc

ρc

=
4

3

δρb

ρb

≡ ∆(S)
0 , (2.3.155)

17We have dropped the perturbation in the baryon pressure as in [38]. This term is kept
in CMBfast and CAMB, but turns out to be negligible for wavelengths observable in the
CMB. It is important at shorter scales and should be included for an accurate calculation
of the matter power spectrum.
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where fν is the fraction of the radiation energy density stored in neutrinos

fν =
ρν

(ργ + ρν)
=

Nν(7/8) (4/11)4/3

1 + Nν(7/8) (4/11)4/3
, (2.3.163)

with Nν the number of light neutrino species, which we take to be Nν = 3 in

agreement with particle physics, and ∆(S)
ν,1 is related to ∆(S)

1 by

∆(S)
ν,1 (q, t) =

23 + 4fν

15 + 4fν
∆(S)

1 (q, t) . (2.3.164)

The higher neutrino multipole moments are not being driven to zero, but they

are higher order in q/aH and can be set to zero initially.

In practice, it may be advantageous not to start the integration too

far in the radiation dominated era to keep the integration time as short as
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These are adiabatic initial conditions

Initial Conditions

∆T,� → 0 for � ≥ 2

∆P,� → 0
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Initial Conditions

These are the equations and initial conditions used by the 
Boltzmann codes such as CAMB or CLASS.

Though somewhat tedious, using the line of sight solutions (2.3.86), (2.3.87)

for ∆(S)
T (q,−q̂ · n̂, t0) and ∆(S)

P (q,−q̂ · n̂, t0),the integrals over n̂ can be done

analytically. One finds the following expressions for the coefficients a(S)
T,�m and

a(S)
P,�m:

a(S)
T,�m = πT0i

�

�
d3q α(q)Y m

�
∗
(q̂)∆(S)

T,�(q, t0) , (2.3.140)

a(S)
P,�m = −πT0i

�

�
d3q α(q)Y m

�
∗
(q̂)∆(S)

E,�(q, t0) . (2.3.141)

(2.3.142)

The quantities ∆(S)
T,�(q, t0) and ∆(S)

E,�(q, t0) are sometimes referred to as transfer

functions and are given by

∆(S)
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t0�
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dt P (t)

×
��

3Φ(q, t)− 2a(t)
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�
)dt�
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dt
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2Aq(t) + 2a(t)
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dt
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a(t)Ḃq(t)

��
j�(qr(t)) , (2.3.143)

∆(S)
E,�(q, t0) =

3

4

�
(� + 2)!

(�− 2)!

t0�

t1

dt
P (t)Π(q, t)

q2r2(t)
j�(qr(t)) . (2.3.144)

For vanishing Stokes parameter V , the dimensionless intensity matrix is real.

Together with the definition of the sources functions (2.3.70), the product of

stochastic parameters and ∆(S)
E,�(q, t0) then satisfies

α(q)
∗∆(S)

E,�(q, t0)
∗

= α(−q)∆(S)
E,�(q, t0) . (2.3.145)
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Combined with the behavior of the spherical harmonics under space inversion

Y m
� (q̂) = (−1)�Y −m ∗

� (−q̂), this implies a∗P,� m = aP,�−m, or equivalently

a(S)
E,� m = −a(S)

P,� m and aB,� m = 0 . (2.3.146)

Using equation (2.3.133), the non-vanishing contributions of the scalar modes

to the multipole coefficients are then given by

C(S)
TT,� = π2T 2

0

�
q2dq

���∆(S)
T,�(q, t0)

���
2

, (2.3.147)

C(S)
TE,� = π2T 2

0

�
q2dq ∆(S)

T,�(q, t0)∆
(S)
E,�(q, t0) , (2.3.148)

C(S)
EE,� = π2T 2

0

�
q2dq

���∆(S)
E,�(q, t0)

���
2

. (2.3.149)

At linear order, the scalar modes thus only contribute to the multipole coef-

ficients, CTT,�, CTE,�, and CEE,�, but not to CBB,�, so that a B-mode signal

would present evidence for vector or tensor modes. There is good evidence

from the observed CTE,� that perturbations are generated early [86], so that

the vector modes would have decayed by now, and a detection of a B-mode

signal would be an indirect detection of gravitational waves. This is somewhat

oversimplified as in the presence of an E-mode signal gravitational lensing will

lead to a B-mode signal. This is an important effect, and at least for � � 100

is expected to be the dominant contribution. Lensing is reasonably well un-

derstood, and it seems to be possible to extract a primordial B-mode signal as

long as the tensor to scalar ratio, which will be introduced in subsections 2.4.2

and 2.4.3, is large enough, roughly r � 0.001− 0.01. We will return to this in

subsection 2.4.3 and explain more carefully what could be learned from such

an observation.

Once the transfer functions are known, we thus know how to obtain

the multipole coefficients. What remains is to give the equations governing
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or directly

With the solution at hand, one computes

similarly for polarization and tensor contribution



From eV to Inflation
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Initial Conditions

Physics of Recombination

Geometry

Late time evolution
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From eV to Inflation



So far, these are initial conditions for the system of 
equations that governs the evolution of the 
universe from around few keV to the present

In this limit, the system has 5 solutions that do not 
decay, one “adiabatic” solution  and 4 “isocurvature” 
solutions. (Bucher et al. 1999)

Experimentally, only the adiabatic solution seems 
excited for which     is constant.

From eV to Inflation

R



a

H

arec

k/a

We can extrapolate backwards very easily at least 
until the temperatures become high enough for 
new degrees of freedom to appear.

From eV to Inflation



Outside the horizon, this adiabatic solution with 
constant     exists not only for the matter content 
present below a few keV, but for a general matter 
content.

To generate the perturbations causally, they cannot
have been outside the horizon very early on. 
This requires a phase with

(Weinberg 2009)

R

(e.g. inflation or bounce)

From eV to Inflation

d

dt

�
q

a|H|

�
< 0



The perturbations are generated as quantum fluctuations
while inside the horizon, and then exit the horizon.

a

H

arec

k/a

From eV to Inflation



There are two cases in which the solution with 
constant     is known to be an attractor: 

• Single field inflation  

• Phase of thermal equilibrium without
  conserved charges.

R

In single field inflation, the anisotropies in the CMB 
directly tell us about the inflationary dynamics!

From eV to Inflation



For standard single field slow-roll inflation, the 
primordial spectrum of scalar perturbations is

with

and

and the 3-pt function too small to be observed.

ns = 1− 4�∗ − 2δ∗

� = − Ḣ

H2 δ =
Ḧ

2HḢ

From eV to Inflation
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q
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Power spectrum measurement

We know how to compute the theory prediction,
now we need to understand the data points.



COBE (DMR) 
(1989-93)

31 GHz 53 GHz 91 GHz

Beyond Primary Anisotropies
CMB data consists of sky maps at different microwave 
frequencies



WMAP 
(2001-10) 23 GHz

33 GHz 41 GHz

94 GHz61 GHz

Beyond Primary Anisotropies



30 GHz 44 GHz 70 GHz

143 GHz100 GHz 217 GHz

545 GHz 857 GHz353 GHz

Beyond Primary Anisotropies
Planck



Beyond Primary Anisotropies

• Reionization

• Thermal SZ effect

• Kinetic SZ effect

• Lensing of the CMB

• ...

We have additional ways to probe cosmology

• Dust

• Synchrotron

• ...

To learn about the CMB this means we must 
understand



y(n̂) =

�
dl neσT

kTe

me

∆T (n̂) = y(n̂) (x coth(x/2)− 4)T0

The change in temperature is set by

A map of the Compton parameter    is a measure of hot gas in 
the universe between us and the surface of last scattering.

y

x =
hν

kT

Thermal SZ effect



Thermal SZ effect

SZ view of Abell 2319 with Planck



Planck SZ clusters Planck Collaboration: Planck catalogue of Sunyaev–Zeldovich sources 
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Fig. 2: The distribution, shown inMollweide projectionwith the Galactic plane horizontal and theMilkyWay centre in the middle, of
the 1227 Planck clusters and candidates across the sky (red thick dots). The masked point-sources (black thin dots), the Magellanic
clouds (large black areas) and the Galactic mask, covering a total of 16.3% of the sky and used by the SZ-finder algorithms to detect
SZ sources, are also shown.

2013). Both show a slightly flatter distribution in the outer parts
(i.e., beyond R500) with respect to the predictions from the nu-
merical simulations. These results are further confirmed by inde-
pendent measurements from Bolocam in a smaller radial range
(r < 2R500, Sayers et al. 2012b). Using the profile of Planck
Collaboration Int. V (2013) does not affect the detection yield
(see Sect. 3) and only slightly modifies the measure of the SZ
flux density (see Sect. 7.5) as compared to the generalized NFW
(GNFW) profile adopted in the three cluster. The fiducial model
parameters for the GNFW profile are given by the parameteriza-
tion of the pressure profile in Eq. 12 of Arnaud et al. (2010). It
states

p(x) =
P0

(c500x)γ [1 + (c500x)α](β−γ)/α
, (1)

with the parameters

[P0, c500, γ,α, β] = [8.40 h−3/270 , 1.18, 0.308, 1.05, 5.49] . (2)

The (weak) mass dependence of the profiles is neglected. Within
the SZ-finder algorithms, the size and amplitude of the profile
are allowed to vary but all other parameters are fixed. The cluster
model is thus equivalent to a shape function characterized by
two free parameters, its amplitude and a characteristic scale θs =
θ500/c500.

2.2.2. Matched Multi-filter (MMF)

Two different implementations of the matched multi-frequency
filter algorithm (MMF1 and MMF3) are used to detect SZ clusters.
Both are extensions, over the whole sky, of the MMF algorithm

(Herranz et al. 2002; Melin et al. 2006). The matched filter op-
timizes the cluster detection using a linear combination of maps
(which requires an estimate of the statistics of the contamina-
tion) and uses spatial filtering to suppress both foregrounds and
noise (making use of the prior knowledge of the cluster pressure
profile and thermal SZ spectrum).

The MMF1 algorithm divides the full-sky Planck frequency
maps into 640 patches, each 14.66 × 14.66 square degrees, cov-
ering 3.33 times the sky. The MMF3 algorithm divides the maps
into a smaller set of 504 overlapping square patches of area
10 × 10 square degrees with the sky covered 1.22 times. The
smaller redundancy of MMF3 with respect to MMF1 implies a
potentially lower reliability of the SZ detections. In order to in-
crease the reliability of the detections, the MMF3 algorithm is
thus run in two iterations. After a first detection of the SZ candi-
dates, a subsequent run centred on the positions of the candidates
refines the estimated S/N and candidate properties. If the S/N of
a detection falls below the threshold at the second iteration, it
is removed from the catalogue. For both implementations, the
matched multi-frequency filter optimally combines the six fre-
quencies of each patch. Auto- and cross-power spectra are di-
rectly estimated from the data and are thus adapted to the local
instrumental noise and astrophysical contamination, which con-
stitutes the dominant noise contribution. Figure 3 illustrates, for
a six arcmin filter size, the ensemble noise maps as measured
by MMF3 in each of the patches. For both MMF1 and MMF3, the
detection of the SZ-candidates is performed on all the patches,
and the resultant sub-catalogues are merged together to produce
a single SZ-candidate catalogue per method.

4

Thermal SZ effect



Planck thermal SZ power spectrum
Planck Collaboration: Cosmology with the all-sky Planck Compton parameter y-map
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Fig. 15. Marginalized bandpowers of the Planck tSZ power spectrum with total (statistical plus foreground) uncertainties (red
points). The red solid line represents the best-fit tSZ power spectrum model. We also show as a blue solid line the best-ft tSZ power-
spectrum obtained from the analysis of cluster number counts (Planck Collaboration XX 2013). The tSZ power spectrum template
used in the CMB cosmological analysis (Planck Collaboration XV 2013; Planck Collaboration XVI 2013) is presented as a green
solid line.

Fig. 13. 2D and 1D likelihood distributions for the combination
of cosmological parameters σ8(Ωm/0.28)3.2/8.1, and for the fore-
ground parameters ACIB and APS. We show the 68% and 95.4%
C.L. contours here.

Foreground contamination is modelled following Sect. 5.2.2.
As discussed there the main uncertainties in the residual power-
spectrum translate into up to 50% uncertainty in the clustered
CIB and point source amplitudes. We thus allow for a variation
of the normalization amplitudes for the clustered CIB, ACIB and
for the point sources, APS, with Gaussian priors centred on one
with standard deviation 0.5.

We have not considered explicitly the expected correlation
between the tSZ effect and the CIB (Addison et al. 2012).
However, using the formalism in Addison et al. (2012), we have
performed simulations of the expected effect and we found that
to a reasonable level of approximation the shape of the tSZ and
clustered CIB cross-power spectrum is very similar to that of
the clustered CIB power spectrum. Therefore, in our simplified
modeling, the clustered CIB normalization factor, ACIB, also ac-
counts for this component.

We assume a Gaussian approximation for the likelihood
function. Best-fit values and uncertainties are obtained using an
adapted version of the Cosmo-MC algorithm (Lewis & Bridle
2002). Only σ8 and Ωm are allowed to vary here. All other cos-
mological parameters are fixed to their best-fit values as obtained
in Table 2 of Planck Collaboration XVI (2013). The normaliza-
tion amplitudes ACIB and APS, considered as nuisance parame-
ters, are allowed to vary between 0 and 3. For the range of mul-
tipoles considered here, the tSZ angular power spectrum varies

13
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Lensing

• Washes out acoustic peaks in the power spectrum
(this effect is included in all the analyses)

• leads to temperature three-point correlations because of 
correlations between ISW and lensing 

• leads to temperature four-point correlations proportional to 
power spectrum of lensing field 

Planck Collaboration: Cosmological parameters

minimum-variance combination of the 143 and 217 GHz maps.
An empirical correction for the shot-noise trispectrum of un-
resolved point sources is made to each spectrum, based on the
measured amplitude of a generalized kurtosis of the appropriate
maps. Additionally, the N(1) bias of Kesden et al. (2003), com-
puted for a fiducial ΛCDM spectrum determined from a pre-
publication analysis of the Planck data, is subtracted from each
spectrum. This latter correction is proportional to Cφφ� and ac-
counts for sub-dominant couplings of the trispectrum, which mix
lensing power over a range of scales into the power spectrum
estimates. Excellent internal consistency of the various Cφφ� esti-
mates is found over the full multipole range.

The Planck lensing likelihood is based on reconstruc-
tions from the minimum-variance combination of the 143 and
217 GHz maps with 30% of the sky masked. Conservatively,
only multipoles in the range � = 40–400 are included, with a
bandpower width ∆� = 45. The range � = 40–400 captures 90%
of the signal-to-noise on a measurement of the amplitude of a
fiducial Cφφ� , while minimizing the impact of imperfections in
modelling the effect of survey anisotropies on the large-scale φ
reconstruction (the “mean-field” of Planck Collaboration XVII
2013), and the large Gaussian noise bias on small scales. Note,
however, that by restricting the range of angular scales we do
lose some ability to distinguish between scale-dependent mod-
ifications of Cφφ� , such as from massive neutrinos, and almost
scale-independent modifications, such as from changes in the
equation of state of unclustered dark energy or spatial curva-
ture. Correlated uncertainties in the beam transfer functions,
point-source corrections, and the cosmology dependence of the
N(1) bias, are modelled in the covariance matrix. The resulting
bandpower correlations are all small, less than 4%, but broad.
Bandpower correlations induced by masking are estimated to be
less than 5% for neighbouring bins and are neglected. The likeli-
hood is modelled as a Gaussian in the bandpowers with a fiducial
(i.e., parameter-independent) covariance. For verification of this
approximation, see Schmittfull et al. (2013).

The connected four-point function is related to the fully-
reduced trispectrum T�1�2�3�4 (L) by

�T�1m1 T�2m2 T�3m3 T�4m4�c =
1
2

�

LM

(−1)M



�1 �2 L
m1 m2 M




×


�3 �4 L
m3 m4 −M


T
�1�2
�3�4

(L) + perms , (38)

(Hu 2001). In the context of lensing reconstruction, the CMB
trispectrum due to lensing takes the form

T�1�2�3�4 (L) ≈ CφφL CTT
�2

CTT
�4

F�1L�2 F�3L�4 , (39)

where CTT
� is the lensed temperature power spectrum and F�1L�2

is a geometric mode-coupling function (Hu 2001; Hanson et al.
2011). Our estimates of Cφφ� derive from the measured trispec-
trum. They are normalized using the fiducial lensed power spec-
trum to account for the factors of CTT

� in Eq. (39). In the like-
lihood, we renormalize the parameter-dependent Cφφ� to account
for the mismatch between the parameter-dependent CTT

� and that
in the fiducial model. Since the best-fit ΛCDM model we con-
sider in this section has a lensed temperature power spectrum
that is very close to that of the fiducial model, the renormalisa-
tion factor differs from unity by less than 0.25%.

The estimated lensing power spectrum Cφφ� is not indepen-
dent of the measured temperature power spectrum CTT

� , but the

dependence is very weak for Planck, and can be accurately
ignored (Schmittfull et al. 2013; Planck Collaboration XVII
2013). As discussed in detail in Schmittfull et al. (2013), there
are several effects to consider. First, the reconstruction noise in
the estimated φ derives from chance correlations in the unlensed
CMB. If, due to cosmic variance, the unlensed CMB fluctuates
high at some scale, the noise in the reconstruction will gen-
erally increase over a broad range of scales. Over the scales
relevant for Planck lensing reconstruction, the correlation be-
tween the measured Cφφ� and CTT

�� from this effect is less than
0.2% and, moreover, is removed by a data-dependent Gaussian
noise bias removal that we adopt following Hanson et al. (2011)
and Namikawa et al. (2012). The second effect derives from cos-
mic variance of the lenses. If a lens on a given scale fluctu-
ates high, the estimated Cφφ� will fluctuate high at that scale.
In tandem, there will be more smoothing of the acoustic peaks
in the measured CTT

�� , giving broad-band correlations that are
negative at acoustic peaks and positive at troughs. The max-
imum correlation is around 0.05%. If we consider estimating
the amplitude of a fiducial lensing power spectrum indepen-
dently from the smoothing effect of CTT

� and the measured Cφφ�
in the range � = 40–400, the correlation between these esti-
mates due to the cosmic variance of the lenses is only 4%. This
amounts to a mis-estimation of the error on a lensing ampli-
tude in a joint analysis of Cφφ� and CTT

� , treated as indepen-
dent, of only 2%. For physical parameters, the mis-estimation
of the errors is even smaller: Schmittfull et al. (2013) estimate
around 0.5% from a Fisher analysis. A third negligible effect
is due to the T–φ correlation sourced by the late integrated
Sachs-Wolfe effect (see Planck Collaboration XIX 2013). This
produces only local correlations between the measured Cφφ� and
CTT
� which are less than 0.5% by � = 40 and fall rapidly on

smaller scales. They produce a negligible correlation between
lensing amplitude estimates for the multipole ranges considered
here. The T–φ correlation is potentially a powerful probe of
dark energy dynamics (e.g., Verde & Spergel 2002) and modi-
fied theories of gravity (e.g., Acquaviva et al. 2004). The power
spectrum CTφ

� can be measured from the Planck data using the
CMB 3-point function (Planck Collaboration XXIV 2013) or,
equivalently, by cross-correlating the φ reconstruction with the
large-angle temperature anisotropies Planck Collaboration XIX
(2013) although the detection significance is only around 3σ.
The power-spectrum based analysis in this paper discards the
small amount of information in the T–φ correlation from Planck.
In summary, we can safely treat the measured temperature and
lensing power spectra as independent and simply multiply their
respective likelihoods in a joint analysis.

We note that ACT (Das et al. 2011, 2013) and
SPT (van Engelen et al. 2012) have both measured the lensing
power spectrum with significances of 4.6σ and 6.3σ, respec-
tively, in the multipole ranges � = 75–2050 and � = 100–1500.
The Planck measurements used here represent a 26σ detection.
We therefore do not expect the published lensing measurements
from these other experiments to carry much statistical weight in
a joint analysis with Planck, despite the complementary range
of angular scales probed, and we choose not to include them in
the analyses in this paper.

In the lensing likelihood, we characterize the estimates of
Cφφ� with a set of eight (dimensionless) amplitudes Âi, where

Âi =
�

�

B�i Ĉ
φφ
� . (40)

26

T (n̂) = T unlensed (n̂+∇φ(n̂))



Detected at high significance (      )

Lensing

Planck Collaboration: Gravitational lensing by large-scale structures with Planck

−0.5

0

0.5

1

1.5

2

1 10 100 500 1000 2000

[L
(L

+
1)
]2
C

φ
φ

L
/2
π
[×

10
7
]

L

Planck (2015)
Planck (2013)

SPT
ACT

Fig. 6 Planck 2015 full-mission MV lensing potential power spectrum measurement, as well as earlier measurements using the
Planck 2013 nominal-mission temperature data (Planck Collaboration XVII 2014), the South Pole Telescope (SPT, van Engelen
et al. 2012), and the Atacama Cosmology Telescope (ACT, Das et al. 2014). The fiducial ΛCDM theory power spectrum based on
the parameters given in Sect. 2 is plotted as the black solid line.

In addition to the priors above, we adopt the same sampling
priors and methodology as Planck Collaboration XIII (2015),†
using CosmoMC and camb for sampling and theoretical predic-
tions (Lewis & Bridle 2002; Lewis et al. 2000). In the ΛCDM
model, as well as Ωbh

2 and ns, we sample As, Ωch
2, and the

(approximate) acoustic-scale parameter θMC. Alternatively, we
can think of our lensing-only results as constraining the sub-
space of Ωm, H0, and σ8. Figure 7 shows the corresponding
constraints from CMB lensing, along with tighter constraints
from combining with additional external baryon acoustic oscil-
lation (BAO) data, compared to the constraints from the Planck

CMB power spectra. The contours overlap in a region of accept-
able Hubble constant values, and hence are compatible. To show
the multi-dimensional overlap region more clearly, the red con-
tours show the lensing constraint when restricted to a reduced-
dimensionality space with θMC fixed to the value accurately mea-
sured by the CMB power spectra; the intersection of the red and
black contours gives a clearer visual indication of the consis-
tency region in the Ωm–σ8 plane.

The lensing-only constraint defines a band in the Ωm–σ8
plane, with the well-constrained direction corresponding ap-
proximately to the constraint

σ8Ω
0.25
m = 0.591 ± 0.021 (lensing only; 68 %). (13)

This parameter combination is measured with approximately
3.5% precision.

The dependence of the lensing potential power spectrum on
the parameters of the ΛCDM model is discussed in detail in
† For example, we split the neutrino component into approximately

two massless neutrinos and one with
�

mν = 0.06 eV, by default.

Appendix E; see also Pan et al. (2014). Here, we aim to use
simple physical arguments to understand the parameter degen-
eracies of the lensing-only constraints. In the flat ΛCDM model,
the bulk of the lensing signal comes from high redshift (z > 0.5)
where the Universe is mostly matter-dominated (so potentials are
nearly constant), and from lenses that are still nearly linear. For
fixed CMB (monopole) temperature, baryon density, and ns, in
the ΛCDM model the broad shape of the matter power spectrum
is determined mostly by one parameter, keq ≡ aeqHeq ∝ Ωmh

2.
The matter power spectrum also scales with the primordial am-
plitude As; keeping As fixed, but increasing keq, means that the
entire spectrum shifts sideways so that lenses of the same typ-
ical potential depth Ψlens become smaller. Theoretical ΛCDM
models that keep �eq ≡ keq χ∗ fixed will therefore have the same
number (proportional to keq χ∗) of lenses of each depth along
the line of sight, and distant lenses of the same depth will also
maintain the same angular correlation on the sky, so that the
shape of the spectrum remains roughly constant. There is there-
fore a shape and amplitude degeneracy where �eq ≈ constant,
As ≈ constant, up to corrections from sub-dominant changes in
the detailed lensing geometry, changes from late-time potential
decay once dark energy becomes important, and nonlinear ef-
fects. In terms of standard ΛCDM parameters around the best-fit
model, �eq ∝ Ω0.6

m h, with the power-law dependence on Ωm only
varying slowly with Ωm; the constraint �eq ∝ Ω0.6

m h = constant
defines the main dependence of H0 on Ωm seen in Fig. 7.

The argument above for the parameter dependence of the
lensing power spectrum ignores the effect of baryon suppres-
sion on the small-scale amplitude of the matter power spectrum
(e.g., Eisenstein & Hu 1998). As discussed in Appendix E, this

8
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The lensing potential itself can also be reconstructed

and provides a map (albeit a noisy one) of (the projection of) 
all matter between us and the surface of last scattering! 
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Planck at the expected level. In Sect. 3.3, we cross-correlate the

reconstructed lensing potential with the large-angle temperature

anisotropies to measure the CTφ
L correlation sourced by the ISW

effect. Finally, the power spectrum of the lensing potential is pre-

sented in Sect. 3.4. We use the associated likelihood alone, and

in combination with that constructed from the Planck temper-

ature and polarization power spectra (Planck Collaboration XI

2015), to constrain cosmological parameters in Sect. 3.5.

3.1. Lensing potential

In Fig. 2 we plot the Wiener-filtered minimum-variance lensing

estimate, given by

φ̂WF

LM =
Cφφ, fid

L

Cφφ, fid

L + NφφL

φ̂MV

LM , (5)

where Cφφ, fid

L is the lensing potential power spectrum in our fidu-

cial model and NφφL is the noise power spectrum of the recon-

struction. As we shall discuss in Sect. 4.5, the lensing potential

estimate is unstable for L < 8, and so we have excluded those

modes for all analyses in this paper, as well as in the MV lensing

map.

As a visual illustration of the signal-to-noise level in the lens-

ing potential estimate, in Fig. 3 we plot a simulation of the MV

reconstruction, as well as the input φ realization used. The re-

construction and input are clearly correlated, although the recon-

struction has considerable additional power due to noise. As can

be seen in Fig. 1, even the MV reconstruction only has S/N ≈ 1

for a few modes around L ≈ 50.

The MV lensing estimate in Fig. 2 forms the basis for a

public lensing map that we provide to the community (Planck

Collaboration I 2015). The raw lensing potential estimate has a

very red power spectrum, with most of its power on large angular

scales. This can cause leakage issues when cutting the map (for

example to cross-correlate with an additional mass tracer over a

small portion of the sky). The lensing convergence κ defined by

κLM =
L(L + 1)

2
φLM , (6)

has a much whiter power spectrum, particularly on large angular

scales. The reconstruction noise on κ is approximately white as

well (Bucher et al. 2012). For this reason, we provide a map

of the estimated lensing convergence κ rather than the lensing

potential φ.

3.2. Lensing B-mode power spectrum

The odd-parity B-mode component of the CMB polarization is

of great importance for early-universe cosmology. At first order

in perturbation theory it is not sourced by the scalar fluctuations

that dominate the temperature and polarization anisotropies, and

so the observation of primordial B-modes can be used as a

uniquely powerful probe of tensor (gravitational wave) or vec-

tor perturbations in the early Universe. A detection of B-mode

fluctuations on degree angular scales, where the signal from

gravitational waves is expected to peak, has recently been re-

ported at 150 GHz by the BICEP2 collaboration (Ade et al.

2014). Following the joint analysis of BICEP2 and Keck Array
data (also at 150 GHz) and the Planck polarization data, primar-

ily at 353 GHz (BICEP2/Keck Array and Planck Collaborations

2015), it is now understood that the B-mode signal detected

by BICEP2 is dominated by Galactic dust emission. The joint

φ̂WF
(Data)

Fig. 2 Lensing potential estimated from the SMICA full-mission

CMB maps using the MV estimator. The power spectrum of

this map forms the basis of our lensing likelihood. The estimate

has been Wiener filtered following Eq. (5), and band-limited to

8 ≤ L ≤ 2048.

φ̂WF
(Sim.)

Input φ (Sim.)

Fig. 3 Simulation of a Wiener-filtered MV lensing reconstruc-

tion (upper) and the input φ realization (lower), filtered in the

same way as the MV lensing estimate. The reconstruction and

input are clearly correlated, although the reconstruction has con-

siderable additional power due to noise.

analysis gives no statistically-significant evidence for primor-

dial gravitational waves, and establishes a 95 % upper limit

r0.05 < 0.12. This still represents an important milestone for

B-mode measurements, since the direct constraint from the B-

mode power spectrum is now as constraining as indirect, and

model-dependent, constraints from the TT spectrum (Planck

Collaboration XIII 2015).

In addition to primordial sources, the effect of gravitational

lensing also generates B-mode polarization. The displacement of

lensing mixes E-mode polarization into B-mode as (Smith et al.

4
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Ideal measurement
How do we estimate the cosmological parameters 
of our favorite model?

P (�θ|D)We would like to know             

D

P (�θ|D) =
P (D|�θ)P (�θ)

P (D)

We cannot compute it directly, but can use Bayes’ theorem

“prior”

This suggests to define a likelihood for our experiment

L(�θ) = P (D|�θ)
which can be computed for any given theory

where    could be        ,  
Denote the parameters by    and the data by �θ

D aobs�m Cobs
�
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Ideal measurement

Warm up: Measurement of temperature anisotropies
For Gaussian perturbations

and 

So the exact likelihood is

P (a�m) =
1

(2πC�)
2�+1

2

exp

�
−
�

m

|a�m|2

2C�

�
�a�ma∗�� m�� = C�δ���δmm�

L(θ) =
�

�

1

(2πC�(θ))
2�+1

2

exp

�
−
�

m

|aobs�m|2

2C�(θ)

�

L(θ) ∝
�

�

exp

�
−2�+ 1

2

�
Cobs

�

C�(θ)
+ lnC�(θ)−

2�− 1

2�+ 1
lnCobs

�

��
or for Cobs
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Ideal measurement

For a measurement including polarization

a�m = (aT,�m, aE,�m, aB,�m)Define

C� =




CTT,� CTE,� 0
CTE,� CEE,� 0

0 0 CBB,�





Then the exact likelihood is

with

Then

L(θ) =
�

�

1

(2π detC�(θ))
2�+1

2
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�
−1

2

�

m

a† obs�m C−1
� (θ)aobs�m

�

L(θ) ∝
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� )
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2

(detC�(θ))
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Adding Real World Effects

In realistic measurements, we have to incorporate

• Noise of the experiment

• Finite resolution of the experiment

• Pixelization of maps

• Masks

• ...

Notice that these likelihoods are Gaussian in terms 
of         but not in terms of Cobs

�aobs�m

Incorporating these effects is thus easy in map space 
where the likelihoods are Gaussian



Adding Real World Effects

Pixel space likelihood

Pixel covariance for signal

Noise covariance matrix

�∆Ti∆Tj� = Cij +Nij

P (∆Ti) =
1

(2π)Npix/2
�
det(C+N)

exp



−1

2

�

ij

∆Ti(C+N)−1
ij ∆Tj





observed pixels

The probability distribution for the        is∆Ti
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L(θ) = 1

(2π)Npix/2
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So the exact likelihood in pixel space is

This easily extends to polarization

Pixel space likelihood



Adding Real World Effects

L(θ) = 1

(2π)Npix/2
�

det(C(θ) +N)
exp



−1

2

�

ij

∆T obs
i (C(θ) +N)−1

ij ∆T obs
j





Unfortunately evaluating such likelihoods is prohibitively 
expensive for high resolution full sky experiments such as 
WMAP or Planck.

To make progress, one uses approximations for the 
likelihoods based on the        .Cobs

�

Pixel space likelihood

So the exact likelihood in pixel space is

This easily extends to polarization



with covariance matrix                       evaluated for some

Adding Real World Effects

Pseudo-     likelihoodC�

One (of many) approximations is a fiducial Gaussian 
approximation

Cfid = �CCt�

L(θ) ∝ 1�
det(Cfid)

exp

�
−1

2
(Cobs −C(θ))tC−1

fid (C
obs −C(θ))

�

fiducial cosmology close to the true cosmology.

The covariance matrix can be computed analytically even for 
masked maps and in the presence of noise



Adding Real World Effects

Notes on the Covariance Matrix

Raphael Flauger

In the following ∆T a
i will denote the sky temperature that would be measured in pixel i in

the channel and or survey a in the absence of noise, and Na
i will denote the noise. The value

of the pixel in the map is then ∆T a
i + Na

i . I will furthermore use W a
i to denote the value of

the mask used for this channel in pixel i. The masked sky temperature map is then

∆T̃ a
i = W a

i (∆T a
i +Na

i ) . (1)

and the pseudo-spectra derived from the masked maps a and b are

C̃ab
� ≡ 1

2�+ 1

�

m

ãa�mã
b∗
�m , (2)

with multipole coefficients
1

ãa�m =

�

i

Ωi∆T̃ a
i Y

∗
�m(n̂i) . (3)

These multipole coefficients of the masked map are related to the multipole coefficients of

∆T a
i

aa�m =

�

i

Ωi∆T a
i Y

∗
�m(n̂i) , (4)

and the noise according to

ãa�m =

�

��,m�

Ka
�m��m�aa��m� +

�

i

ΩiN
a
i W

a
i Y

∗
�m(n̂i) , (5)

where the mode coupling matrix for the mask W a
i is

Ka
�m��m� =

�

i

ΩiW
a
i Y

∗
�m(n̂i)Y��m�(n̂i) . (6)

Before proceeding, notice two properties of the mode coupling matrix that will be helpful later

on. First, since W a
i is real, it is Hermitian

(Ka
�m��m�)

∗
= Ka

��m��m (7)

1
Here Ωi is the area of pixel i and for HEALpix is simply Ωi = 4π/Npix.

1

For masked sky maps
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Second, since masking by W a
i and then by W b

i amounts to masking by the product W a
i W

b
i ,

they satisfy2 �
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where
Kab

�m��m� =
�

i

ΩiW
a
i W

b
i Y

∗
�m(n̂i)Y��m�(n̂i) . (9)

Combining these two properties leads to the useful identity
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The computation of the covariance matrix involves ensemble averages of the pseudo-spectra
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Introducing the mode coupling matrix,
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1
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Ka
�m��m�Kb∗

�m��m� (12)

these ensemble averages of the pseudo-spectra simply become

�C̃ab
� � =
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��

Mab
���(p��b

ab
�� )

2�Ĉab
�� �+ Ñab

� . (13)

where p� is the pixel window function, bab� is the beam transfer function and Ñab
� is the angular

power spectrum of the noise. For white noise

�Na
i N

b
j � = σa

i
2δabδij , (14)

one finds
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�
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Ω2
iW

a
i
2σa

i
2δab . (15)

2The formal proof uses the completeness of spherical harmonics.
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Before proceeding, notice two properties of the mode coupling matrix that will be helpful later

on. First, since W a
i is real, it is Hermitian

(Ka
�m��m�)

∗
= Ka

��m��m (7)

1
Here Ωi is the area of pixel i and for HEALpix is simply Ωi = 4π/Npix.

1

we have multipole coefficients

and pseudo-spectra

Notes on the Covariance Matrix

Raphael Flauger

In the following ∆T a
i will denote the sky temperature that would be measured in pixel i in

the channel and or survey a in the absence of noise, and Na
i will denote the noise. The value

of the pixel in the map is then ∆T a
i + Na

i . I will furthermore use W a
i to denote the value of

the mask used for this channel in pixel i. The masked sky temperature map is then

∆T̃ a
i = W a

i (∆T a
i +Na

i ) . (1)

and the pseudo-spectra derived from the masked maps a and b are

C̃ab
� ≡ 1

2�+ 1

�

m

ãa�mã
b∗
�m , (2)

with multipole coefficients
1

ãa�m =

�

i

Ωi∆T̃ a
i Y

∗
�m(n̂i) . (3)

These multipole coefficients of the masked map are related to the multipole coefficients of

∆T a
i

aa�m =

�

i

Ωi∆T a
i Y

∗
�m(n̂i) , (4)

and the noise according to

ãa�m =

�

��,m�

Ka
�m��m�aa��m� +

�

i

ΩiN
a
i W

a
i Y

∗
�m(n̂i) , (5)

where the mode coupling matrix for the mask W a
i is

Ka
�m��m� =

�

i

ΩiW
a
i Y

∗
�m(n̂i)Y��m�(n̂i) . (6)

Before proceeding, notice two properties of the mode coupling matrix that will be helpful later

on. First, since W a
i is real, it is Hermitian

(Ka
�m��m�)

∗
= Ka

��m��m (7)

1
Here Ωi is the area of pixel i and for HEALpix is simply Ωi = 4π/Npix.

1

Second, since masking by W a
i and then by W b

i amounts to masking by the product W a
i W

b
i ,

they satisfy2 �

��,m�

Ka
�m��m�Kb

��m����m�� = Kab
�m���m�� , (8)

where
Kab

�m��m� =
�

i

ΩiW
a
i W

b
i Y

∗
�m(n̂i)Y��m�(n̂i) . (9)

Combining these two properties leads to the useful identity

�

��,m�

Ka
�m��m�Kb∗

���m����m� = Kab
�m���m�� . (10)

The computation of the covariance matrix involves ensemble averages of the pseudo-spectra

�C̃ab
� � =

1

2�+ 1

�

m

�ãa�mãb∗�m�

=
1

2�+ 1

�

m

�

��,m�
���,m��

Ka
�m��m�Kb∗

�m���m���aa��m�ab∗���m���

+
1

2�+ 1

�

m

�

i,j

ΩiΩjW
a
i W

b
j Y

∗
�m(n̂i)Y�m(n̂j)�Na

i N
b
j � . (11)

Introducing the mode coupling matrix,

Mab
��� ≡

1

2�+ 1

�

m,m�

Ka
�m��m�Kb∗

�m��m� (12)

these ensemble averages of the pseudo-spectra simply become

�C̃ab
� � =

�

��

Mab
���(p��b

ab
�� )

2�Ĉab
�� �+ Ñab

� . (13)

where p� is the pixel window function, bab� is the beam transfer function and Ñab
� is the angular

power spectrum of the noise. For white noise

�Na
i N

b
j � = σa

i
2δabδij , (14)

one finds

Ñab
� =

1

4π

�

i

Ω2
iW

a
i
2σa

i
2δab . (15)

2The formal proof uses the completeness of spherical harmonics.
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These are related to the underlying power spectra by
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Equation (22) is exact but expensive to evaluate in practice. To simplify it further, notice
that the entries of the mode coupling matrices Ka

�m��m� peak along the diagonal � ∼ �� and
fall off with a width ∆� set by the mask. The sum over the products of the mode coupling
matrices in equation (22) then peaks near �̄ ≈ (� + ��)/2 with a width

√
2∆�. If the angular

power spectra vary slowly compared to this width, we can approximate them by their value
at (�+ ��)/2. Since (�+ ��)/2 may not be an integer, they are commonly approximated by the
geometric mean

Cac
�̄ ≈

�
Cac

� Cac
�� and Cbd

�̂
≈

�
Cbd

� Cbd
�� , (24)

which is accurate to O ((∆�/�)2) and becomes a good approximation for � � ∆�. With this
approximation and the identity (10), the covariance matrix for the pseudo-spectra is

�∆C̃ab
� ∆C̃cd

�� � =
1

(2�+ 1)(2�� + 1)

�

m,m�

�
Kac

�m��m�

�
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� Cac
�� + Σac
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��
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�m��m�

�
Cbd

� Cbd
�� + Σbd∗

�m��m�

�

+(c ↔ d) . (25)

With the help of equation (18) this finally becomes

�∆C̃ab
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�� � =
�
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� Cbd
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�� C
bd
�� Ξ(�, ��,W (ac)(bd)) +

�
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� Cbc
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�� C
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�� Ξ(�, ��,W (ad)(bc))

+
�
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� Cac
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σ ) +
�
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�� Ξ(�, ��,W (ad)(bc)

σ )

+
�
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σ ) +
�
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� Cbc
�� Ξ(�, ��,W (bc)(ad)

σ )

+ Ξ(�, ��,W (ac)(bd)
σσ ) + Ξ(�, ��,W (ad)(bc)

σσ ) , (26)

where
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1
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�mw
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a
i
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i
2δabY ∗

�m(n̂i) . (31)

4

Adding Real World Effects

Equation (22) is exact but expensive to evaluate in practice. To simplify it further, notice
that the entries of the mode coupling matrices Ka

�m��m� peak along the diagonal � ∼ �� and
fall off with a width ∆� set by the mask. The sum over the products of the mode coupling
matrices in equation (22) then peaks near �̄ ≈ (� + ��)/2 with a width

√
2∆�. If the angular

power spectra vary slowly compared to this width, we can approximate them by their value
at (�+ ��)/2. Since (�+ ��)/2 may not be an integer, they are commonly approximated by the
geometric mean

Cac
�̄ ≈
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Cac

� Cac
�� and Cbd

�̂
≈

�
Cbd

� Cbd
�� , (24)

which is accurate to O ((∆�/�)2) and becomes a good approximation for � � ∆�. With this
approximation and the identity (10), the covariance matrix for the pseudo-spectra is
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With the help of equation (18) this finally becomes
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where
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σσ � =

1
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Their covariance matrix is

Equation (22) is exact but expensive to evaluate in practice. To simplify it further, notice
that the entries of the mode coupling matrices Ka

�m��m� peak along the diagonal � ∼ �� and
fall off with a width ∆� set by the mask. The sum over the products of the mode coupling
matrices in equation (22) then peaks near �̄ ≈ (� + ��)/2 with a width

√
2∆�. If the angular

power spectra vary slowly compared to this width, we can approximate them by their value
at (�+ ��)/2. Since (�+ ��)/2 may not be an integer, they are commonly approximated by the
geometric mean

Cac
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Cac

� Cac
�� and Cbd

�̂
≈

�
Cbd

� Cbd
�� , (24)

which is accurate to O ((∆�/�)2) and becomes a good approximation for � � ∆�. With this
approximation and the identity (10), the covariance matrix for the pseudo-spectra is
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Equation (22) is exact but expensive to evaluate in practice. To simplify it further, notice
that the entries of the mode coupling matrices Ka

�m��m� peak along the diagonal � ∼ �� and
fall off with a width ∆� set by the mask. The sum over the products of the mode coupling
matrices in equation (22) then peaks near �̄ ≈ (� + ��)/2 with a width

√
2∆�. If the angular

power spectra vary slowly compared to this width, we can approximate them by their value
at (�+ ��)/2. Since (�+ ��)/2 may not be an integer, they are commonly approximated by the
geometric mean
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which is accurate to O ((∆�/�)2) and becomes a good approximation for � � ∆�. With this
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Adding Real World Effects

Hybrid likelihoods

Pixel based likelihoods are exact but prohibitively expensive 
for full sky, high resolution experiments

This suggests using a hybrid likelihood consisting of a pixel 
based likelihood on large scales and a pseudo-     likelihood
on small scales

C�

Pseudo-    likelihood only accurate for high enough multipoles 
as the     obey a   -square distribution with           degrees of 
freedom 

C� χ 2�+ 1
C�



Parameter estimation

To find the likelihood as function of our parameters, we 
could evaluate it on a grid.

Since the likelihoods are typically costly to evaluate
and especially for higher dimensional parameter spaces 
this is too time consuming.

We sample them using Markov Chain Monte Carlo
methods instead.



Parameter estimation

To find the likelihood as function of our parameters, we 
could evaluate it on a grid.

Since the likelihoods are typically costly to evaluate
and especially for higher dimensional parameter spaces 
this is too time consuming.

We sample them using Markov Chain Monte Carlo
methods instead.

Typically with CosmoMC
but other tools exist



Parameter estimation

Metropolis-Hastings

• Choose a starting point in parameter space and 
compute 

• Pick a randomly chosen second point and 
compute 

• If         keep the point, if        keep with 
probability 

• Repeat

L(θ0)

� = L(θ1)/L(θ0)

� > 1 � < 1

�

With some additional work this will generate 
random points drawn from      , which can be used 
to find best-fits, means, error bars...  

L(θ)


