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Lecture IV

• Measurement of angular power spectrum and 
parameter constraints (continued) 

• More on primordial anisotropies

• Search for primordial gravitational waves

• Outlook



Planck Angular Power Spectrum

• Launched on May 14, 2009

• Observed “from” L2 from August 12, 2009

• End of observations for HFI January 2012

• End of observations for LFI August 2013

• Temperature data for “nominal” mission 
released on March 21, 2013

• First release of full mission data on February 5, 2015



• pixel space likelihood for low 
(T mostly constrains amplitude, P mostly constrains optical depth)

• fiducial Gaussian approximation for high 

The likelihood is a hybrid of a
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The high-   likelihoods for are based on

• 100x100 spectra up to 

• 143x143 spectra up up to

• 143x217 and 217x217 spectra up to  

�
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•  power spectrum templates to model diffuse galactic 
emission and extragalactic foregrounds

•  analytic, fiducial Gaussian approximation for likelihood
as discussed earlier

•  noise properties from fit of Planck noise model to map 
half-differences

•  masks for galactic and point source emission

143 GHz100 GHz 217 GHz

Planck Angular Power Spectrum
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LCDM
Once we have produced a likelihood, we can run our 
favorite Markov Chain Monte Carlo routine
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More on temperature anisotropies



where                    satisfies a Boltzmann equation.        

More on temperature anisotropies

Recall that the temperature anisotropy is given by

∆T (n̂)

T0
=

1

4
∆T (�x = 0,−n̂, t0)

∆T (�x, p̂, t0)

∆T (�x, p̂, t) =

�
d3q

(2π)3
α(�q)∆T (q, µ, t)e

i�q·�x

We looked for solutions of the form

∆T (q, µ, t) =
�

�

(−i)�(2�+ 1)P�(µ)∆T,�(q, t)

and expanded                  in terms of Legendre polynomials

to arrive at the Boltzmann hierarchy.

∆T (q, µ, t)
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More on temperature anisotropies

Let’s undo the last step and consider the equation 
satisfied by                  . 

For scalar perturbations

∆(S)
T (q, µ, t)



More on temperature anisotropies
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The source functions Φ and Π can also be expressed in terms of these multipole

coefficients
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P,0 + ∆(S)

T,2 + ∆(S)
P,2 . (2.3.78)

To turn this into a closed system, one thus only needs to know the metric

components appearing in these equations as well as the velocity potential.

Their time evolution is of course governed by the Einstein equations, and we

give the complete system of equations in the next subsection. To do this, we

will also need to know the components of the stress-energy tensor in terms of

the multipole moments. Using equations (2.3.16), (2.3.32), and (2.3.69), one

finds
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γ q = ργ∆
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Another way to find a somewhat formal solution to the coupled Boltz-

mann equations for ∆(S)
T and ∆(S)

P is to treat the system as an inhomogeneous

system of ordinary differential equations and solve it as if the sources were

known. This solution is commonly referred to as integrating the equations

44



More on temperature anisotropies

The formal solution obtained by line-of-sight integration

shows that the temperature perturbations consist of two 
contributions

− d
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��

×
�
ωc

�
∆(S)

T,0 −
1

2
P2(µ)Π(q, t)− 2a2(t)B̈q(t)− 2a(t)ȧ(t)Ḃq(t)
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More on temperature anisotropies
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More on temperature anisotropies
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More on temperature anisotropies
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More on temperature anisotropies
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More on temperature anisotropies

×
t0�

t1

dt exp

�
−iqµ

� t0

t

dt�

a(t�)

�
exp

�
−
� t0

t
dt�ωc(t

�)

�
ωc(t)

Intrinsic density fluctuation and 
gravitational redshifting

Doppler effect

×
�
1

4
∆(S)

T,0(q, t)−
1

8
P2(µ)Π(q, t)− 1

2
a2(t)B̈q(t)−

1

2
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More on temperature anisotropies

Doppler

Sachs-Wolfe
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More on temperature anisotropies
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Integrated Sachs-Wolfe effect

This contribution can be generated even in the 
absence of free electrons.



More on temperature anisotropies

ISW
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More on temperature anisotropies
During matter domination the gravitational potential 
does not evolve

d

dt

�
Aq(t) + a2(t)B̈q(t) + a(t)ȧ(t)Ḃq(t)

�
= 0

The integrated Sachs-Wolfe effect has two 
contributions

early contribution:

late contribution:

During recombination radiation is not yet 
completely negligible.

At late times dark energy becomes important



More on temperature anisotropies

late ISW

early ISW
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More on temperature anisotropies
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        suppression from 
reionization

More on temperature anisotropies

5 10 50 100 500 1000
0

1000

2000

3000

4000

5000

�

����1�
C �
�2Π�Μ

K
2 �

Recombination vs late time contributions

late ISW

Sachs-Wolfe, Doppler
and early ISW

e−2τ



More on temperature anisotropies

Much of this can be understood analytically. Let us focus on 
the dominant Sachs-Wolfe and Doppler contributions

and as a first approximation set                        . 
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More on temperature anisotropies

After neglecting contributions from polarization and anisotropic 
stress
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More on temperature anisotropies

a(S)
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It is interesting to compute the multipole coefficients

The behavior of the spherical Bessel functions for          implies
that the dominant contributions arises from wave numbers 
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More on temperature anisotropies

For the adiabatic solution modes are frozen outside the 
horizon.  So the behavior of modes will be very different for

q

aLHL
< 1 or

q

aLHL
> 1

a

H

arec

q/a



More on temperature anisotropies

Where does the transition happen?

q

aLHL
=

�

aLrLHL
≈ �

60

� < 60

� > 60

contribution predominantly from modes 
still frozen during recombination

contribution predominantly from modes 
inside the horizon during recombination



More on temperature anisotropies

For the frozen long modes we can write the multipole 
coefficients in terms of the curvature perturbation

and for a scale-invariant* primordial power spectrum

�(�+ 1)C�

2π
=

T 2
0

25
∆2

R

a(S)
T,�m ≈ 4πi�

�
d3q

(2π)3
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�
−1

5
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�

This is sometimes referred to as the Sachs-Wolfe plateau 

(*) it can also be evaluated for the LCDM power law spectrum 



More on temperature anisotropies

The short modes enter the horizon before recombination. For 
simplicity we will consider modes that enter during radiation 
domination.

When the modes enter a large number of free electrons are 
present and we can expand in          . 

q

aeqHeq
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aeqrLHeq
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140
� 1

q/aωc

This is referred to as the tight-coupling expansion.



More on temperature anisotropies

At leading order, the Boltzmann hierarchy reduces to the 
hydrodynamics, and the solutions are sound waves.
The Sachs-Wolfe contribution takes the form

R =
3

4

ρb
ργ

rs =

� tL

0

dt

a(t)
�
3(1 +R(t))

a(S)
T,�m = 4πi�
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5
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with
baryon loading

(comoving)
sound horizon 

T (q) transfer function



More on temperature anisotropies

a(S)
T,�m = 4πi�

�
d3q

(2π)3
R(�q)Y ∗
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There are two effects we have ignored in this approximation. 

×
�
3

5
T (q)RL − e−

� tL
0 Γ(q,t)dt

(1 +RL)1/4
cos(qrs)

�
j�(qrL)

1. The solutions oscillate around last scattering and the finite 
width of the last scattering surface leads to damping.

2. The mean free path of the photons becomes comparable to 
the momentum of the modes for large    which leads to Silk 
damping.

q



• Since the integral is dominated by               , the peak 
positions are set by                , which e.g. probes curvature. 

More on temperature anisotropies

a(S)
T,�m = 4πi�

�
d3q

(2π)3
R(�q)Y ∗

�m(q̂)

θ = rs/rL

q ≈ �/rL

• Since              the relative height of the peaks is a sensitive 
probe of the baryon abundance.

R ∝ Ωb

Including the Doppler contribution

×
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3e−
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• The damping scale probes the mean free path of the photons 
and thus, for example, the Helium abundance.
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In addition to the density perturbations, inflation also 
predicts a nearly scale invariant spectrum of gravitational 
waves

B-mode search
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B-mode search

In addition to TT, TE, EE, 
primordial gravitational 
waves generate BB



A measurement of the tensor contribution would provide a 
direct measurement of the expansion rate of the universe 
during inflation, as well as the energy scale

V 1/4
inf = 1.06× 1016 GeV

� r

0.01

�1/4

with r =
∆2

h

∆2
R

B-mode search

∆2
h(k) =

2H2(tk)

π2

The power spectrum of primordial gravitational waves 
generated by inflation is



•  For r>0.01 the inflaton must have moved over a super-
Planckian distance in field space.

•  Motion of the scalar field over super-Planckian distances is 
hard to control in an effective field theory

V (φ) = V0 +
1

2
m2φ2 +

1

3
µφ3+

1

4
λφ4 + φ4

∞�

n=1

cn (φ/Λ)
n

B-mode search



Use a field with a shift symmetry and break the shift 
symmetry in a controlled way.

Possible Solution:

e.g. Linde’s chaotic inflation with

V (φ) =
1

2
m2φ2 m � Mpwith

So a detection of primordial gravitational waves might teach
us about shift symmetries in quantum gravity.    

In field theory we may simply postulate such a symmetry, 
but it is far from obvious that such shift symmetries exist 
in a theory of quantum gravity.

B-mode search



Noise level:        87 nK deg - the deepest map at 150 GHz of this patch of sky

(Planck noise level: few   K deg)

BICEP2 polarization data

BICEP2: E signal
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Foreground models made in collaboration with 
David Spergel, Colin Hill, and Aurelien Fraisse

BICEP2

BICEP2xKeck

BICEP2

BICEP2xKeck

BICEP2

BICEP2xKeck

B-mode search



• measurement of BB in the BICEP2 region at 353 GHz 
rescaled to 150 GHz

Planck Collaboration: Dust polarization at high latitudes

Fig. 9: Planck 353 GHz DBB
� angular power spectrum computed on MB2 defined in Sect. 6.1 and extrapolated to 150 GHz (box

centres). The shaded boxes represent the ±1σ uncertainties: blue for the statistical uncertainties from noise; and red adding in
quadrature the uncertainty from the extrapolation to 150 GHz. The Planck 2013 best-fit ΛCDMDBB

� CMB model based on temper-
ature anisotropies, with a tensor amplitude fixed at r = 0.2, is overplotted as a black line.

in Sects. 5.2 and 6.2. This indicates that MB2 is not one of the
outliers of Fig. 7 and therefore its dust B-mode power is well rep-
resented by its mean dust intensity through the empirical scaling
lawD ∝ �I353�1.9.

These values of the DBB
� amplitude in the � range of the pri-

mordial recombination bump are of the same magnitude as those
reported by BICEP2 Collaboration (2014b). Our results empha-
size the need for a dedicated joint analysis of the B-mode po-
larization in this region incorporating all pertinent observational
details of the Planck and BICEP2 data sets, which is in progress.

6.4. Frequency dependence

We complement the power spectrum analysis of the 353 GHz
map with Planck data at lower frequencies. As in the analysis
in Sect. 4.5, we compute the frequency dependence of the BB
power measured by Planck at HFI frequencies in the BICEP2
field, using the patch MB2 as defined in Sect. 6.1.

We compute on MB2 the Planck DBB
� auto- and cross-power

spectra from the three Planck HFI bands at 100, 143, 217, and
353 GHz, using the two DetSets with independent noise at each
frequency, resulting in ten angular power spectra (100 × 100,
100×143, 100×217, 100×353, 143×143, 143×217, 143×353,
217 × 217, 217 × 353, and 353 × 353), constructed by combin-
ing the cross-spectra as presented in Sect. 3.2. We use the same
multipole binning as in Sect. 6.3. To each of these DBB

� spectra,
we fit the amplitude of a power law in � with a fixed exponent
αBB = −0.42 (see Sect. 4.2). In Fig. 10 we plot these amplitudes
as a function of the effective frequency from 143 to 353 GHz, in
units of sky brightness squared, like in Sect. 4.5. Data points at
effective frequencies below 143 GHz are not presented, because

the dust polarization is not detected at these frequencies. An up-
per limit on the synchrotron contribution at 150 GHz from the
Planck LFI data is given in Appendix C.4.

We can see that the frequency dependence of the amplitudes
of the Planck HFI DBB

� spectra is in very good agreement with
a squared dust modified blackbody spectrum having βd = 1.59
and Td = 19.6 K (Planck Collaboration Int. XXII 2014). We note
that this emission model was normalized only to the 353 GHz
point and that no global fit has been performed. Nevertheless,
the χ2 value from the amplitudes relative to this model is 4.56
(Ndof = 7). This shows that dust dominates in the specific MB2
region defined where these cross-spectra have been computed.
This result emphasizes the need for a dedicated joint Planck–
BICEP2 analysis.

7. Conclusions

We have presented the first nearly all-sky statistical analysis of
the polarized emission from interstellar dust, focussing mostly
on the characterization of this emission as a foreground contam-
inant at frequencies above 100 GHz. Our quantitative analysis of
the angular dependence of the dust polarization relies on mea-
surements at 353 GHz of the CEE

� and CBB
� (alternatively DEE

�

andDBB
� ) angular power spectra for multipoles 40 < � < 500. At

this frequency only two polarized components are present: dust
emission; and the CMB, which is subdominant in this multipole
range. We have found that the statistical, spatial, and spectral
distribution properties can be represented accurately by a sim-
ple model over most of the sky, and for all frequencies at which
Planck HFI measures polarization.
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Fig. 10: Frequency dependence of the amplitude ABB of the angular power spectrum DBB
� computed on MB2 defined in Sect. 6.1,

normalized to the 353 GHz amplitude (red points); amplitudes for cross-power spectra are plotted at the geometric mean frequency.
The square of the adopted dust SED, a modified blackbody spectrum with βd = 1.59 and Td = 19.6 K, is over-plotted as a black
dashed-line, again normalized to the 353 GHz point. The ±1σ error area arising from the expected dispersion of βd, 0.11 for the
MB2 patch size (Sect. 2.2.1), is displayed in light grey.

– The angular power spectra CEE
� and CBB

� at 353 GHz are
well fit by power laws in � with exponents consistent with
αEE,BB = −2.42 ± 0.02, for sky fractions ranging from 24 %
to 72 % for the LR regions used.

– The amplitudes ofDEE
� andDBB

� in the LR regions vary with
mean dust intensity at 353 GHz, �I353�, roughly as �I353�1.9.

– The frequency dependence of the dust DEE
� and DBB

� from
353 GHz down to 100 GHz, obtained after removal of the
DEE
� prediction from the Planck best-fit CMB model (Planck

Collaboration XVI 2014), is accurately described by the
modified blackbody dust emission law derived in Planck
Collaboration Int. XXII (2014), with βd = 1.59 and Td =
19.6 K.

– The ratio between the amplitudes of the two polarization
power spectra is CBB

� /C
EE
� = 0.53, which is not consistent

with current theoretical models.
– Dust DEE

� and DBB
� spectra computed for 352 high Galactic

latitude 400 deg2 patches satisfy the above general properties
at 353 GHz and have the same frequency dependence.

We have shown that Planck’s determination of the 353 GHz
dust polarization properties is unaffected by systematic errors
for � > 40. This enables us to draw the following conclusions
relevant for CMB polarization experiments aimed at detection
of primordial CMB tensor B-modes.

– Extrapolating the Planck 353 GHz DBB
� spectra computed

on the 400 deg2 circular patches at high Galactic latitude to
150 GHz shows that we expect significant contamination by
dust over most of the high Galactic latitude sky in the � range
of interest for detecting a primordialDBB

� spectrum.

– Even for the cleanest of these regions, the Planck statistical
error on the estimate of DBB

� amplitude at � = 80 for such
small regions is at best 0.17 (3σ) in units of rd.

– Our results show that subtraction of polarized dust emission
will be essential for detecting primordial B-modes at a level
of around 0.1 or below.

– There is a significant dispersion of the polarizationDBB
� am-

plitude for a given dust total intensity. Choices of the cleanest
areas of the polarized sky cannot be made accurately using
the Planck total intensity maps alone.

– Component separation, or template cleaning, can best be
done at present with the Planck HFI 353 GHz data, but the
accuracy of such cleaning is limited by Planck noise in small
fields. Ground-based or balloon-borne experiments should
include dust channels at high frequency. Alternatively, if they
intend to rely on the Planck data to remove the dust emis-
sion, they should optimize the integration time and area so
as to have a similar signal-to-noise level for the CMB and
dust power spectra.

Turning specifically to the part of the sky mapped by the
BICEP2 experiment, our analysis of the MB2 region indicates
the following results.

– Over the multipole range 40 < � < 120, the Planck 353 GHz
DBB
� power spectrum extrapolated to 150 GHz yields a value

1.32×10−2 µK2
CMB, with statistical error ±0.29×10−2 µK2

CMB
and a further uncertainty (+0.28,−0.24) × 10−2 µK2

CMB from
the extrapolation. This value is comparable in magnitude to
the BICEP2 measurements at these multipoles that corre-
spond to the recombination bump.
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• the tensor contribution to the temperature 
anisotropies on large angular scales

• the B-mode polarization generated by tensors. 

With the current data, we can constrain    byr

The two likelihood are essentially independent

L(rTT , rBB) = LTT (rTT )LBB(rBB)

Typically we talk about L(r, r)

B-mode search



Planck+BICEP1

Constraint dominated by temperature data

before BICEP2L(rTT , rBB)

B-mode search



after BICEP2L(rTT , rBB)

Planck+BICEP1
Planck+BICEP2

B-mode search

Constraint from polarization data comparable to constraint 
from temperature and will soon be significantly stronger.



after BK14L(rTT , rBB)

Planck+BICEP1
Planck+BICEP2
Planck+BK14

B-mode search

Constraint from polarization data comparable to constraint 
from temperature and will soon be significantly stronger.



Outlook

ongoing and upcoming:

BICEP2, Keck Array, BICEP3, SPTPol/SPT3G, ACTPol/
AdvACT, ABS, CLASS, POLARBEAR/Simons Array, 
C-BASS, QUIJOTE, B-Machine, Simons Observatory

EBEX, SPIDER, PIPER

future (>5 years)

LiteBIRD, PIXIE,... 

CMB Stage IV

Ground:

Balloon:

Ground:

Satellite:
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Forecasting exactly how well it can do is difficult given our 
current level of understanding of foregrounds.

• Intensity map

• Polarization fraction

• Polarization angles 

Models for polarized 
foreground need three 
ingredients, typically

Planck helps on large scales at frequencies 150 GHz and up. 
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(Brust, Kaplan, Walters 1303.5079)σCMBS4(Neff) ≈ 0.02

Outlook



Conclusions

• I hope you know slightly more about the CMB than you 
did before

• The CMB has provided us with valuable information 
about the early universe for 51 years and will continue to 
do so. 

• We may detect primordial gravitational waves, measure 
neutrino masses, the number of effective relativistic 
degrees of freedom, dark matter, ...

• Large scale structure surveys will provide a useful 
counter part

• The next decade should be very interesting in cosmology



Thank you


