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GW detection in practice [see PRD 93, 122003 (2016)]
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“science” ~ S|gnal(parameters)
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noise = data — signal
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noise = data — signal

hence p(signal parameters) = p(noise residual)
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noise = data — signal

hence p(signal parameters) = p(noise residual)

) _ maximum likelihood
R estimate = *
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because of colored detector noise, detection and parameter
estimation are sensitive to the frequency content of waveforms...

acceleration noise: position noise:
thermal, gravity, Sun optical sensing
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under the assumption of Gaussianity, the power spectral
density vyields the sampling distribution of noise
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See “Data analysis recipes: Fitting a model to data”
Hogg, Bovy, and Lang 2010

http://arxiv.org/abs/1008.4686



http://arxiv.org/abs/1008.4686

Bayesian inference: we update our prior knowledge of
ohysical parameters using the likelihood of observed data

p(0:)p(s]6;)—— = P(n =15 —h(b;)) = Ne—(n:n)/2

p(bils) =

deviates from high-SNR 9
covariance predicted  F;; = ( 7;
with Fisher matrix 00
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...but every noise realization will be different!
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how to do this for many parameters?



Monte Carlo (Von Neumann and Ulam, 19406):
computational technigues that use random numbers




Monte Carlo (Von Neumann and Ulam, 19406):
computational technigues that use random numbers

[ o)k =+ 6= 5 > 0



accuracy depends only on variance,
Nnot on the number of dimensions




unfortunately uniform sampling Is extremely
inefficient in high-dimensional spaces

(@nd so are importance sampling
and rejection sampling)

d Viox = (27)¢
d/2
Vball = ()
f(n/2 + 1)
Vbox N dd
—7T Vhball




Nicholas Metropolis and his
Mathematical Analyzer Numerical Integrator And Calculator
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Equation of State Calculations by Fast Computing Machines
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A gencral method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modifed Monte Carlo integration over configuration space. Results for the twodimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

Marshall Rosenbluth and Edward Teller
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HE purpose of this paper is to describe a general
method, suitable for fast electronic computing

machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules, Classical statistics is assumed,
only two-body forces are considered, and the potential
field of a molecule is assumed spherically symmetric,
These are the usual assumptions made in theories of
liquids. Subject to the above assumptions, the method
is not restricted to any range of temperature or density.



Teller’'s crucial suggestion: ensemble averaging...

/ d(x)p(x)dx, with p(x) ~ e ECI/KT

U
/¢(X dp(x) =~ Zgb (D) with {xMp

Thus the most naive method of carrying out the
integration would be to put each of the .V particles at a
random position in the square (this defines a random
point in the 2V.dimensional configuration space), then
calculate the energy of the system according to Eq. (1),
and give this configuration a weight exp(-E/kT).
This method, however, is not practical for close-packed
configurations, since with high probability we choose a
configuration where exp(—E/&T') is very small; hence
a configuration of very low weight. So the method we
employ is actually a modified Monte Carlo scheme,
where, instead of choosing configurations randomly,
then weighting them with exp(—E/RT), we choose
configurations with a probability exp(—E/kT) and
weight them evenly.



TOUR OF ACCOUNTING
THATS THE

PROBLEM
WITH RAN-
DOMNESS

OVER HERE

WE HAVE OUR
RANDOM NUMBER
GENERATOR

L in® 2000 Wwted Fasnw'e Brnidate ine

§ It might be mentioned that the random numbers that we
used were generated by the middle square process. That is, if
is an m digit random number, then a new random number £,
is given as the middle m digits of the complete 2m digit square of £,.



...with samples generated by the “Metropolis™ algorithm

. * given x"), propose x+1) by random walk
e acceptitif AE = Ex1) — E(x") < O,
or with probability e 25T if AE > 0
‘ e if not accepted, set x+1) = x0)

“'7‘ * the resulting detailed balance

guarantees convergence to P

We then calculate the change in energy of the system
AE, which is caused by the move. If AE<O, i.e., if
the move would bring the system to a state of lower
energy, we allow the move and put the particle in its
new position. If AE>0, we allow the move with
probability exp(—AE/kT); ie.,, we take a random
number §; between 0 and 1, and if §;<exp(—AE/kRT),
we move the particle to its new position. If §;
>exp(—AE/RT), we return it to its old position.



but why does it work"?



* the Metropolis algorithm implements a
Markov Chain {x"} with transition
probability T(xi:x) = Tjj

e T is set by the proposal distribution Q
and the transition rule (e.g., Metropolis)

e if T; satisfies certain properties, its
repeated application to any initial
probability distribution p% eventually
vields the equilibrium distribution p% = P;
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the Metropolis algorithm is very s 5
general and very easy to w8
implement ket S %

but: AN A €

convergence, while
guaranteed, is hard to assess

random-walk exploration is e need (L/&)°~(Omax/ Omin)? Steps

very inefficient to get independent sample
try:

e annealing, parallel tempering
e Hamiltonian MCMC
e affine-invariant samplers

(emcee)
the evidence/partition function ¢ thermodynamic integration
s difficult to compute e reversible-jump MCMC
7 = / e"ECI/KT gy * nested sampling (MultiNest)

p(M) = / p(datalx)p(x)dx



Testing GR: the standard hierarchy of theories of gravitation

WEP Newton’s equivalence principle
10-1 M =mag

EEP  Einstein’s equivalence principle

= WEP + local Lorentz invariance 1022
+ local position invariance 10-5

metric theories (what fields?)

SEP  EEP, but also for gravitational
104 experiments

1981 —-+2006
Dicke: test of EPs + PPN tests of metric theories



the PPN formalism: metric and potentials

goo = =142U =280 —2%®w + (2y+2+as+ (1 —26)®) 4237284+ 1+ ( + 6),
+2(1 4 C3)®s + 2(3y + 3¢ — 26)®4 — ({1 — 26) A - () — a2 — a3)w’U — aqw'w’' U,
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the PPN formalism: parameters

Parameter What it measures redative Value in Value in semi- Value in fully
to GR GR conservative conservative
theories theories

~ How much space-curvature 1 ~ > 10-°
produced by unit rest mass?

B8 How much *nonlinearity” in 1 B8 8 104
the superposition law for
gravity?

3 Preferred-location effects? 0 § §

oy Preferred-frame effects? 0 oy 0

oy 0 oz 0

ay 0 0 0

oy Violation of conservation 0 0 0

(€ of total momentum? 0 0 0

¢ 0 0 0

(€} 0 0 0

¢ 0 0 0



Gravitational radiation...

...Is predicted In virtually any metric theory of gravity that embodies
Lorentz invariance, but it may differ from GR in:

polarizations
speed of waves

radiation reaction  \[ested atlow v

with binary pulsars)

Unfortunately, no simple, principled framework like PPN exists for
describing radiative systems or systems containing strong internal
fields.

S0 we must consider individual alternative theories, or perform
null tests of consistency.



Nalve and sentimental tests of GR consistency

In order of difficulty and un-likelihood:

If we divide the waveform in segments, do individual SNRs pass a x?
test”

Is there a coherent residual?

What about the source parameters determined from each segment—are
they consistent (within estimated errors) with the parameters determined
from the entire waveform?

Is the shape of the likelihood surface consistent with what’s expected for
this waveform family”?

Oh

a)\physical

iInstrument systematics, modeling, data

But before we suspect general relativity: <
analysis, physical environments...

oh
~ (
a)\non—GR >




|& Selected for a Viewpoint in Physics

week endin

PRL 116, 221101 (2016) PHYSICAL REVIEW LETTERS 3 JUNE 2016

£

Tests of General Relativity with GW150914

B.P. Abbott et al.’

(LIGO Scientific and Virgo Collaborations)

SNR in coherent burst analysis of
data residual after subtracting
best-fit GW150914 waveform

If we assume that SNR,, is entirely due to the mismatch
between the MAP waveform and the underlying true signal,
and that the putative violation of GR cannot be reabsorbed
in the waveform model by biasing the estumates of the
physical parameters [54,55], we can constrain the mini-
mum fitting factor (FF) [56] between the MAP model and
GW150914. An imperfect fit to the data leaves SNRZ, =
(1 = FF?)FF-2SNR3,, [57,58], where SNR, = 25.370; is
the network SNR inferred by LALINFERENCE [3).
SNR,., € 7.3 then implies FF > 0.96. Considenng that,
for parameters similar to those inferred for GW150914, our
waveform models have much higher FFs against numerical
GR waveforms, we conclude that the noise-weighted
correlation between the observed strain signal and the true
GR waveform is >96%. This statement can be read as
implying that the GR prediction for GW150914 is venfied
to be better than 4%, in a precise sense related o noise-
weighted signal correlation, and, conversely, that effects
due to GR violations in GW150914 are limited to less than
4% (for effects that cannot be reabsorbed in a redefinition
of physical parameters).
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Speed of waves by dephasing in GW150914

(in future systems with counterparts: compare with EM!)
1.0
0.8 = 8
206 3 .%
£ 04 é
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Radiation reaction by waveform coefficients in GW150914
and GW151226 (in NS binaries: dipolar radiation)

W(f) = £ T 2D w(f) = 37 [+ galog f] £/ 1 IMR(G, a

- DVE :




For comparison: the timing of NS-NS pulsars allows accurate
tests of GR In terms of easily interpreted parameters
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