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A review on covariant phase space method
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Phase space & symplectic structure

Phase space is a manifold M
equipped with ΩAB such that:

ΩAB = −ΩBA

δΩ = 0

ΩABV
B

= 0 ⇔ V
B

= 0

Ω
AB

= (Ω−1)AB
M

Ω
AB

X
A

Phase Space

Manifold M with symplectic 2-form Ω
AB
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Covariant Phase Space Method

C. Crnkovic and E. Witten, Covariant Description Of Canonical Formalism In

Geometrical Theories, In Hawking, S.W. (ed.), Israel, W. (ed.): Three hundred years

of gravitation,(1987), 676-684.

Abhay Ashtekar, Luca Bombelli, and Rabinder Koul, Phase space formulation of

general relativity without a 3+1 splitting, Lect. Notes Phys., 278, , (1987).

J. Lee and R. M. Wald, Local symmetries and constraints, J. Math. Phys. 31, 725
(1990).

Phase space manifold M
S =

∫
L[Φ] ⇒ phase space manifold M is composed of field Φ(xα).

Symplectic 2-form Ω

δL[Φ] = E(Φ)δΦ + dΘ(δΦ,Φ), then the symplectic form Ω would be:

Ω(δ1Φ, δ2Φ,Φ) =

∫
Σ

ωLW(δ1Φ, δ2Φ,Φ) ,

in which ωLW = δ1Θ(δ2Φ,Φ)− δ2Θ(δ1Φ,Φ).
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Covariant Phase Space Method

ΩLW Φ(xµ)

M

Covariant phase space

Independence of Ω from Σ (conservation)

dω(δ1Φ, δ2Φ,Φ) = 0 and ω(δ1Φ, δ2Φ,Φ)
∣∣∣
∂Σ

= 0 ,

the former is satisfied if Φ and δΦ satisfy e.o.m and linearized e.o.m
respectively

for the latter, one usually needs to impose some (fall-off) conditions on δΦ.

Ambiguity

Θ(δΦ,Φ)→ Θ(δΦ,Φ) + dY(δΦ,Φ)

⇒ ω(δ1Φ, δ2Φ,Φ)→ ω(δ1Φ, δ2Φ,Φ) + d
(
δ2Y(δ1Φ,Φ)− δ1Y(δ2Φ,Φ)

)
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Hamiltonian generators (conserved charges)

Hamiltonian generator variation associated with ε

For any diff+gauge generator ε ≡ {ξ, λ} in spacetime (with arbitrary δε), the
Hamiltonian generator is:

δHε ≡
∫

Σ

δ[Φ]Θ(δεΦ,Φ)− δεΘ(δΦ,Φ) =

∫
Σ

dkε(δΦ,Φ) =

∮
∂Σ

kε(δΦ,Φ) .

Conservation conditions

dω(δΦ, δεΦ,Φ) ≈ 0 , ω(δΦ, δεΦ,Φ)
∣∣∣
∂Σ
≈ 0 .

Integrability condition

(δ1δ2 − δ2δ1)Hε ≈ 0 , ∀ (δ1Φ, δ2Φ,Φ)

⇒
∮
∂Σ

(
ξ · ω(δ1Φ, δ2Φ,Φ) + kδ1ε(δ2Φ,Φ)− kδ2ε(δ1Φ,Φ)

)
= 0.

G. Compre, P. J. Mao, A. Seraj and M. M. Sheikh-Jabbari, Symplectic and Killing
symmetries of AdS3 gravity: holographic vs boundary gravitons, JHEP 1601, 080
(2016). [arXiv:1511.06079].
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Solution phase space
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Phase space & thermodynamics

Microcanonical ensemble
N free particles in a given volume
and energy interval.

S = −kB ln
(

Vol(M)N
)

p

q

M

Canonical ensemble
N free particles in a given volume
and temperature.

Z =

∫
MN

e−βE

S = kB(1− β ∂

∂β
) lnZ

p

q

M
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Phase space & thermodynamics

p

q

V1

p

q

V2

E, V

A useful diagram: phase space of a system at different
thermodynamic variables
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Covariant statistical phase space

A (black Hole) solution
identified by its dynamical
fields Φ̂(xµ)

M,J, . . .

M ,Ω
LW Statistical phase space

Φ(xµ)
Φ̂(xµ)

I The Φ(xµ) are fields generated from the known black hole Φ̂(xµ) by the action
of non-trivial diffeomorphism generators.

G. Compère, K. Hajian, A. Seraj, and M. M. Sheikh-Jabbari, Extremal Rotating Black
Holes in the Near-Horizon Limit: Phase Space and Symmetry Algebra, Physics Letters
B, 749, (2015). [arXiv:1503.07861].

G. Compère, K. Hajian, A. Seraj, and M. M. Sheikh-Jabbari, Wiggling Throat of
Extremal Black Holes, JHEP 1510 (2015) 093. [arXiv:1506.07181].

G. Compre, P. J. Mao, A. Seraj and M. M. Sheikh-Jabbari, Symplectic and Killing
symmetries of AdS3 gravity: holographic vs boundary gravitons, JHEP 1601, 080 (2016).
[arXiv:1511.06079].
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Covariant solution phase space

Solutions identified by some
parameters Φ̂(xµ; pi)

M̂ , Ω̂
LW

Φ̂(xµ; p′i)

Φ̂(xµ; pi)

I The set of solutions Φ̂(xµ; pi) constitute a covariant phase space, which we
have called “solution phase space”. The manifold M̂ is built of Φ̂(xµ; pi) up to
pure gauge transformations. The symplectic 2-form is the ΩLW confined to
this manifold.

I The tangent space of the solution phase space is spanned (up to infinitesimal
pure gauges) by “parametric variations”:

δ̂Φ ≡ ∂Φ̂

∂pi
δpi

K. Hajian, A. Seraj and M. M. Sheikh-Jabbari, JHEP 1410, 111 (2014), [arXiv:1407.1992].
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An example for solution phase space

Kerr-Newman solution phase space

Theory: Einstein-Maxwell L = 1
16πG

(R− F 2)

Dynamical fields Φ̂: metric gµν and gauge field Aµ

Manifold M̂:

ds2 = −(1−f)dt2 +
ρ2

∆
dr2 + ρ2dθ2 − 2fa sin2 θ dtdψ +

(
r2 + a2 + fa2 sin2 θ

)
sin2 θ dψ2 ,

ρ2 ≡ r2 + a2 cos2 θ , ∆ ≡ r2 − 2Gmr + a2 + q2 , f ≡
2Gmr − q2

ρ2
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A =
q r

ρ2
dt− q ra sin2 θ

ρ2
dψ , A→ A+ dλ

Parameters: pi = {m,a, q}
Parametric variations:

δ̂gµν =
∂ĝµν
∂m

δm+
∂ĝµν
∂a

δa+
∂ĝµν
∂q

δq , δ̂Aµ =
∂Âµ
∂m

δm+
∂Âµ
∂a

δa+
∂Âµ
∂q

δq
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Conserved charges associated with exact symmetries
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Symplectic symmetry generators

Symplectic symmetry generator

Definition: A generator ε = {ξ, λ} is called symplectic symmetry generator if

(1) ω(δΦ, δεΦ,Φ) ≈ 0 for all Φ and δΦ in the phase space and its tangent space,

(2) δHε be finite and integrable.

I Being a symplectic symmetry generator, conservation of δHε is guaranteed. It
is because both of the equations are satisfied:

dω(δΦ, δεΦ,Φ) ≈ 0 , ω(δΦ, δεΦ,Φ)
∣∣∣
∂Σ
≈ 0 .

I Being a symplectic symmetry generator, the δHε is independent of chosen
codimension-2 surface of integration:∮

S2

kε(δΦ,Φ)−
∮
S1

kε(δΦ,Φ) =

∫
Σ

ω(δΦ, δξΦ,Φ) = 0
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Exact symmetry generators

Non-exact and exact symplectic symmetry generators

Symplectic symmetry generators are composed of two sets:

1 non-exact symmetries: A symplectic symmetry generator χ = {ξ, λ} is
called non-exact if δχΦ 6= 0 at least on one point of the phase space.

2 exact symmetries: A symplectic symmetry generator η = {ζ, λ} is called
exact if δηΦ = 0 all over the phase space.

I Non-exact symplectic symmetries have been used to build “statistical phase
space”.

I Exact symplectic symmetries are in our main focus in the “solution phase
space”.

No ambiguity

I Conserved charges associated with the exact symmetries are unambiguous:

ω(δΦ, δηΦ,Φ)→ ω(δΦ, δηΦ,Φ) + d

���
���

���
���:

0(
δηY(δΦ,Φ)− δY(δηΦ,Φ)

)
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Overall view

In brief:
Covariant phase space method + solution phase space Φ̂(xµ, pi) and

parametric variations δ̂Φ + focusing on exact symmetry generators
η = {ζ, λ}:

Conserved charge associated with η and its integrability

Conserved charge associated with the exact symmetry η = {ζ, λ}:

δ̂Hη =

∮
S

kη(δ̂Φ, Φ̂) .

Integrability condition:∮
S

(
ζ · ω̂(δ̂1Φ, δ̂2Φ, Φ̂) + kδ̂1η(δ̂2Φ,Φ)− kδ̂2η(δ̂1Φ, Φ̂)

)
= 0, ∀δ̂1,2Φ and ∀Φ̂.

If integrable, then

Hη[Φ̂] =

∫ p

p̄

δ̂Hη +Hη[Φ̄] ,

The Hη[Φ̄] is the reference point (i.e. constant of integration).
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Overall view

Properties in brief:

covariant phase space method ⇒ covariant variations of charges,

solution phase space ⇒ calculability,

exact symmetries ⇒ conservation of charges,

exact symmetries ⇒ independence of the chosen codimension-2 surface
of integration S,

exact symmetries ⇒ removing ambiguity in the charge.
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Overall view

Theory L

Solution

phase space Φ̂

Exact symmetry η

Θ ω kε

δ̂Φ

kη(δ̂Φ, Φ̂)

δ̂Hη =
∮
S
kη

integrable?

Hη(Φ̂)

yes
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Application: Kerr-Newman-(A)dS charges and first law(s)
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Application: Kerr-Newman-(A)dS black holes

Theory: L = 1
16πG

(R− F 2 − 2Λ)

kε(δΦ,Φ) : For the theory under consideration, and for
diffeomorphism+gauge transformation ε = {ξ, λ}

kε(δΦ,Φ) =

√
−g

2! 2!
εµνσρ (kEHµν

ε + kMµν
ε ) dxσ ∧ dxρ

in which

k
EHµν
ξ =

1

16πG

([
ξ
ν∇µh− ξν∇τhµτ + ξτ∇νhµτ +

1

2
h∇νξµ − hτν∇τξµ

]
− [µ↔ ν]

)
,

k
Mµν
ε =

1

8πG

([(−h
2
F
µν

+ 2F
µρ
h
ν
ρ − δF

µν)
(ξ
σ
Aσ + λ)− FµνξρδAρ − 2F

ρµ
ξ
ν
δAρ

]
− [µ↔ ν]

)
where hµν ≡ gµσgντδgστ and h ≡ hµµ.
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Application: Kerr-Newman-(A)dS black holes

Solution phase space M̂:

ds2 = −∆θ(
1− Λr2

3

Ξ
−∆θf)dt2 +

ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 − 2∆θfa sin2 θ dtdϕ

+

(
r2 + a2

Ξ
+ fa2 sin2 θ

)
sin2 θ dϕ2 ,

ρ2 ≡ r2 + a2 cos2 θ , ∆r ≡ (r2 + a2)(1− Λr2

3
)− 2Gmr + q2 ,

∆θ ≡ 1 +
Λa2

3
cos2 θ , Ξ ≡ 1 +

Λa2

3
, f ≡ 2Gmr

ρ2Ξ2
,

Âµdxµ =
qr

ρ2Ξ
(∆θdt− a sin2 θ dϕ) .

Parameters: pi = {m,a, q}
Parametric variations:

δ̂gµν =
∂ĝµν
∂m

δm+
∂ĝµν
∂a

δa+
∂ĝµν
∂q

δq , δ̂Aµ =
∂Âµ
∂m

δm+
∂Âµ
∂a

δa+
∂Âµ
∂q

δq
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Application: Kerr-Newman-(A)dS black holes

I Mass: η = {∂t, 0}

δ̂M =
∂
(
m
Ξ2

)
∂m

δm+
∂
(
m
Ξ2

)
∂a

δa+
∂
(
m
Ξ2

)
∂q

δq ⇒ M =
m

Ξ2
,

The reference points have been chosen such that pure (A)dS spacetime would
have vanishing mass.

I Angular momentum: η = {∂ϕ, 0}

δ̂J =
∂
(
ma
Ξ2

)
∂m

δm+
∂
(
ma
Ξ2

)
∂a

δa+
∂
(
ma
Ξ2

)
∂q

δq ⇒ J =
ma

Ξ2
.

The reference points have been chosen such that pure (A)dS spacetime would
have vanishing angular momentum.

I Electric charge: η = {0, 1}

δ̂Q =
∂
(
q
Ξ

)
∂m

δm+
∂
(
q
Ξ

)
∂a

δa+
∂
(
q
Ξ

)
∂q

δq ⇒ Q =
q

Ξ
.

The reference points have been chosen such that pure (A)dS spacetime would
have vanishing electric charge.

23 / 26



Application: Kerr-Newman-(A)dS black holes

Choosing rH to be any one of the horizons present in the geometry, then, surface
gravity, angular velocity and electric potential associated to that horizon are:

κH =
rH(1− Λa2

3
− Λr2

H
− a2+q2

r2
H

)

2(r2
H

+ a2)
, ΩH =

a(1−
r2
H
l2

)

r2
H

+ a2
, ΦH =

qrH
r2
H

+ a2
.

I Entropies: ηH = {ζH ,−
2πΦ

H
κ
H
} in which ζH = 2π

κ
H

(∂t + ΩH∂ϕ)

δ̂SH =

∂

(
π(r2

H
+a2)

GΞ

)
∂m

δm+

∂

(
π(r2

H
+a2)

GΞ

)
∂a

δa+

∂

(
π(r2

H
+a2)

GΞ

)
∂q

δq ,

⇒ SH =
π(r2

H
+ a2)

GΞ
.

Reference points:

Event horizons: vanishing entropy as reference point on pure (A)dS.
Cosmological horizons: reference point on pure dS

Hη
H

[dS4] =
πl2

G
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Application: Kerr-Newman-(A)dS black holes

ηH = {ζH ,−
2πΦH

κH

} =
2π

κH

{∂t, 0}+
2πΩH

κH

{∂ϕ, 0} −
2πΦH

κH

{0, 1} ,

I First law(s): linearity of δHη in η, for each one of the horizons, results to

δSH =
2π

κH

δM − 2π

κH

ΩHδJ −
2π

κH

ΦHδQ

which by Hawking temperature(s) TH =
κ
H

2π
yields the first law(s)

δM = THδSH + ΩHδJ + ΦHδQ .

I Notice that although Tµν 6= 0, one does not need integrate it over the volume,
to prove the first laws,

I By the integrability condition, one can rule out other Killing vectors as
candidates for the mass etc,

I Charges are automatically finite.

I Entropy are found similar to other conserved charges, over almost arbitrary
codimension-2 surface S.

I thermodynamics of Kerr-AdS, Kerr and Kerr-dS are unified.
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