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A review on covariant phase space method J
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Phase space is a manifold M Phase Space
equipped with €, , such that:

@ 0,5 =0,
e /=0
00,V =0 vV’ =0

X
M

Manifold M with symplectic 2-form Q , o
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Geometrical Theories, In Hawking, S.W. (ed.), Israel, W. (ed.): Three hundred years
of gravitation,(1987), 676-684.

@ Abhay Ashtekar, Luca Bombelli, and Rabinder Koul, Phase space formulation of
general relativity without a 3+1 splitting, Lect. Notes Phys., 278, , (1987).

@ J. Lee and R. M. Wald, Local symmetries and constraints, J. Math. Phys. 31, 725
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Phase space manifold M
S = [L[®] = phase space manifold M is composed of field ®(z*).

Symplectic 2-form 2
SL[®] = E(®)dP + dO(6P, @), then the symplectic form Q would be:

Q61 9P, 02P, P) = / Wi (01D,02P, D),
>z

in which wLW = 51@(52‘1), Q)) S 52@(51‘1), CI))
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Covariant phase space

w (@)

|§

dw(6:1®,8,®,8) =0  and w(61<1>,62<1>,<1>)‘8 —a,
>

@ the former is satisfied if ® and §® satisfy e.o.m and linearized e.o.m
respectively

o for the latter, one usually needs to impose some (fall-off) conditions on §®.

O(53,d) — O(3®, ®) + dY (60, B)
= w(61<1>, 62D, q>) — w(61<1>, 029D, (I>) ar d(52Y(51<I>, @) — 51Y(52(I>, (I?‘))




Hamiltonian generator variation associated with e

For any diff+gauge generator e = {&, A\} in spacetime (with arbitrary de), the
Hamiltonian generator is:

5H€E/5[‘1)]@(56@,(1))—56@(5@,@):/dkze(5<I>,<I>): k (60, ).
> >z %

Conservation conditions

dw(6®, 6.3, 3) ~ 0, w(acp,aeqx@)‘a ~0.
>

Integrability condition

((5152 = 5251)H€ ~ 0, V((;lq), (52@, ‘I‘)

= (g (61D, 528, D) + ks, e (52B, B) — Kesye (01, <1>)) =!
[9)3}

@ G. Compre, P. J. Mao, A. Seraj and M. M. Sheikh-Jabbari, Symplectic and Killing
symmetries of AdS3 gravity: holographic vs boundary gravitons, JHEP 1601, 080
(2016). [arXiv:1511.06079).
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Solution phase space J
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Microcanonical ensemble

N free particles in a given volume
and energy interval.

§ = —kpn (Vol(M)™)

Canonical ensemble

N free particles in a given volume
and temperature.

Z = / e PE
MnN

S =kp(1 —5%)1112
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A useful diagram: phase space of a system at different
thermodynamic variables

(CTP)



AM T,
= P(zH
dary (=)
M, QLW Statistical phase space

A (black Hole) solution
identified by its dynamical
fields ®(z")

> The ®(z*) are fields generated from the known black hole ®(z*) by the action
of non-trivial diffeomorphism generators.

@ G. Compere, K. Hajian, A. Seraj, and M. M. Sheikh-Jabbari, Eztremal Rotating Black
Holes in the Near-Horizon Limit: Phase Space and Symmetry Algebra, Physics Letters
B, 749, (2015). [arXiv:1503.07861].

@ G. Compere, K. Hajian, A. Seraj, and M. M. Sheikh-Jabbari, Wiggling Throat of
Eztremal Black Holes, JHEP 1510 (2015) 093. [arXiv:1506.07181].

@ G. Compre, P. J. Mao, A. Seraj and M. M. Sheikh-Jabbari, Symplectic and Killing
symmetries of AdSs gravity: holographic vs boundary gravitons, JHEP 1601, 080 (2016).

[arXiv:1511.06079].
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o &(ak;p))

* d(zH;pi)

Solutions identified by some M ’ Q2

LW
parameters ®(z";p;)

» The set of solutions ®(x*;p;) constitute a covariant phase space, which we
have called “solution phase space”. The manifold M is built of ®(z*;p;) up to

pure gauge transformations. The symplectic 2-form is the €2, confined to
this manifold.

» The tangent space of the solution phase space is spanned (up to infinitesimal
pure gauges) by “parametric variations”:

o8
api

s 26 K. Hajian, A. Seraj and M. M. Sheikh-Jabbari, JHEP 1410, 111 (2014), [arXiv:1407.1992].
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Kerr-Newman solution phase space

@ Theory: Einstein-Maxwell £ = z-7 (R — F?)

e Dynamical fields : metric g, and gauge field A,
e Manifold M:

2
ds? = —(1—f)dt? + %dv‘2 + p2d6? — 2fasin? 6 dtde) + (r2 +a? + fa®sin® 0) sin? 6 dep?
2Gmr — ¢?

p2 =12+ a%cos? 6, A=1r2—2Gmr+a?®+¢°, f 3
p

)

grasin® @

- o, Ao Atar

o Parameters: p; = {m,a,q}

@ Parametric variations:

bA, = O s+ 2Au 5, 4 9Au

OGuv OGuv OGuv
om + da + o o % 34

5
om da ag °1 4

59;“/ =
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Conserved charges associated with exact symmetries
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Symplectic symmetry generator

Definition: A generator e = {£, A} is called symplectic symmetry generator if
(1) w(0P,6.P,P) =~ 0 for all & and §® in the phase space and its tangent space,
(2) dH. be finite and integrable.

> Being a symplectic symmetry generator, conservation of  H, is guaranteed. It
is because both of the equations are satisfied:

dw(3®, 6., @) ~ 0, w(6<I>,6€<I>,<I>)‘a ~0.
bD)

» Being a symplectic symmetry generator, the § H. is independent of chosen
codimension-2 surface of integration:

f k6(5<1>,<1>)—7{ k6(5<1>,¢>):/2w(5<1>,55<1>,<1>):0

S S1
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Non-exact and exact symplectic symmetry generators
Symplectic symmetry generators are composed of two sets:

@ non-exact symmetries: A symplectic symmetry generator x = {&, A\} is
called non-exact if 6, ® # 0 at least on one point of the phase space.

© exact symmetries: A symplectic symmetry generator n = {¢, \} is called
exact if §,® = 0 all over the phase space.

» Non-exact symplectic symmetries have been used to build “statistical phase
space”.

» Exact symplectic symmetries are in our main focus in the “solution phase
space”.

No ambiguity
» Conserved charges associated with the exact symmetries are unambiguous:

0

w(8®,8,®,®) — w(5D,5,®,®) +d(6,Y (5D, P (6,0, ®))
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In brief: .
Covariant phase space method + solution phase space ®(z*,p;) and

parametric variations 50 + focusing on exact symmetry generators
n={C A}
Conserved charge associated with n and its integrability

Conserved charge associated with the exact symmetry n = {¢, A}:

5H, = f{ (50, 3)
s
Integrability condition:

7{ (¢ @(51®,5:0,8) + k5., (5:2, @) — K

(S@,cﬁ)) =0, Vo120 and V.
8

Sam

If integrable, then
A ® ~ —
Hy[®] = / 0Hy + Hy[®],
D

The H,[®] is the reference point (i.e. constant of integration).
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Properties in brief:
@ covariant phase space method = covariant variations of charges,
@ solution phase space = calculability,
o exact symmetries = conservation of charges,

o exact symmetries = independence of the chosen codimension-2 surface
of integration 8,

o exact symmetries = removing ambiguity in the charge.
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Solution
phase space P
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| Exact symmetry n J
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Application: Kerr-Newman-(A)dS charges and first law(s) J
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o Theory: L= 7(R— F? —2A)

@ kc(0®, ®) : For the theory under consideration, and for
diffeomorphism+gauge transformation e = {&, A}

k. (60, D) = 7‘5!_2!9 €pvop (KETH 4 EMBYY dz® A da”

in which
1
BH pv__ Vol eV ur viopr | Locoven 1w w]
ki _167rG<[£Vh §'VohtT £ 6 VIR 4 ShVYEr — h v,g] [HHV]),
m_ 1 —h » % w o
EM# :%([(TF“ +2FMPRY — SFMV) (67 Ag + A) — FHYEPSA, — 2FP1E 5Ap] ke V])

where h" = ¢g"?g"" g, and h = ht),.
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@ Solution phase space M:
Ar
ds® = —Ag( —Agf)dt? +£ dr? +£ d6% — 2A¢ fasin® 0 dtdy
? 2
—+ (T —;—a + fa®sin® 6‘) sin? 0 dy?,
2 2 2 2 2 2 Ar?
p " =r"+a“cos" 0, A= (r +a)(1—?)—2Gmr+q,
_ Ad® — Ad? _ 2Gmr
Ae:l—"_TCOS 07 ==1 +T f:p2E27
A da* = ;%(Agdt —asin®0dy).
o Parameters: p; = {m,a,q}
@ Parametric variations:
c g v Gy : dA 9A dA
0gu = 2 om " 5a Juv 5 0A, = ) B
9uv = B ° T Tog 2% T T5g °T 5= Bm °™ Tt Ba % TBg
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> Mass: n = {00}

s (&) (%), . (&) _m

The reference points have been chosen such that pure (A)dS spacetime would
have vanishing mass.

> Angular momentum: n = {0,,0}

8(%) om + 8(%) da +

0 = —om B ag 4 T =

The reference points have been chosen such that pure (A)dS spacetime would
have vanishing angular momentum.

» FElectric charge: n = {0,1}
s 28),  9() .  9(§) _
0Q = 5 =20m + —=5da + 9e o0g = @

The reference points have been chosen such that pure (A)dS spacetime would
have vanishing electric charge.

RIJES
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Choosing 7,; to be any one of the horizons present in the geometry, then, surface
gravity, angular velocity and electric potential associated to that horizon are:

K

|

Aa? 2 2442 2
TH(l_T_ATH_%) a a(l—:%‘) gy
&= 2(r2 + a?) ’ B2 4 g2 U2 4 g2

Entropies: ny = {Cy, —2:iH } in which ¢, = j—;(at + Q4 0,)

n(r2 +a?) w(r? +a?) m(r2 +a?)
() a() (%)
0S8y = om + da +

om da dq

dq,

? 2
m(rs +a”)
- s =T

Reference points:

o Event horizons: vanishing entropy as reference point on pure (A)dS.
e Cosmological horizons: reference point on pure dS
w2

Hy, [dS4] = el

(CTP)
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Ky

21D 27D
s (B O =

H H

Ma = {CH?_ } = il{atao}"_ {Oal}a

First law(s): linearity of 0H, in 7, for each one of the horizons, results to

55, = 2sm — 2T 57— o 50
K gy

K’H H
which by Hawking temperature(s) Ty, = ;—ﬁ yields the first law(s)

SM = Ty 68, + Q67 + ©,6Q.

» Entropy are found similar to other conserved charges, over almost arbitrary

Notice that although T}, # 0, one does not need integrate it over the volume,
to prove the first laws,

By the integrability condition, one can rule out other Killing vectors as
candidates for the mass etc,

Charges are automatically finite.

codimension-2 surface 8.

thermodynamics of Kerr-AdS, Kerr and Kerr-dS are unified.
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Thanks for your attention




