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Uranium	Fission	Yield



Volumetric swelling versus fast neutron fluence for two engineering ceramic oxides: a-Al2O3
and MgAl2O4

(also shown in the plot is the displacement damage dose in units of displacements per atom (dpa))

C. Kinoshita and S. J. Zinkle, "Potential

and limitations of ceramics in terms of

structural and electrical integrity in

fusion environments," J. Nucl. Mater.

233-237 (1996) 100-110.



Schematic diagrams showing effects of irradiation on annular cylinders of two 
engineering ceramic oxides: 
(a) a-Al2O3 and (b) MgAl2O4



Schematic diagrams showing atomic level effects of energetic particle irradiation on two 
engineering ceramic oxides: 
(a) a-Al2O3 and (b) MgAl2O4

Instantaneous 
damage
corresponds to 
approximately a 
femtosecond (10-15

s) after a particle-
solid interaction, 
while damage 
evolution represents 
the atomic situation 
after a few 
picoseconds (10-12 s) 
of evolved time.



Examples	of	Swelling

Ref:	Garner,	Ch.	6,	Irradiation	Performance	of	Cladding	and	Structural	Steels	in	Liquid	Metal	Reactors,	of	“Nuclear	materials
part	1”,	Vol	10A,	Published	by	VCH,	Germany	

Radiation-Induced	Swelling



Swelling	is	one	of	the	most	catastrophic	
consequences	of	high-dose	radiation	damage.

Swelling is caused by complicated microstructural changes, 
especially:

1. Nucleation and growth of interstitial dislocation loops

followed by 

2. Nucleation and growth of voids

**In	certain	circumstances	where	significant	transmutation	
occurs,	swelling	can	be	due	to	the	accumulation	of	bubbles	of	
gas	(e.g.,	He	or	Xe bubbles).

Radiation-Induced	Swelling



Radiation-Induced	Interstitial	Dislocation	Loops

Fe                                                            Zn (basal plane)             



Bright-field (BF) transmission electron microscopy (TEM) image showing the microstructure
of a-Al2O3 following fast neutron irradiation at T = 1050 K to a fluence of 31025 n/m2.

The micrograph reveals a high density of small voids (2-10 nm diameter), arranged in 
rows along the c-axis of the hexagonal unit cell for the a-Al2O3.

Micrograph courtesy of F. Clinard, Los Alamos National Laboratory.

Radiation-Induced	Voids



Radiation-Induced	Bubbles

F82H (36 appm He) 10B-doped F82H (330 appm He) 

HFIR irradiation at 400˚C to 51 dpa

E.	Wakai	et	al.	J.	Nucl.	Mater.	
283-287	(2000)	799



Imagine	the	radioactive	alpha	decay	of	a	
Pu-239	nucleus	sitting	in	a	(U1-x,Pux)1Y6O12

actinide	waste	form



The light ion (a) produces a dilute displacement cascade with a characteristic “pearls-on-a-string” geometry. The
heavy ion (b) produces a dense cascade in which all the atoms in the interior of the cascade are set in motion in a
process known as a displacement spike.

Examples	of	light-ion	and	heavy-ion-induced	displacement	cascades









Total	linear	energy	loss	rate	is	the	sum	of	
nuclear	plus	electronic	energy	loss	rates
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Nuclear	vs.	Electronic	Stopping

From R. S. Averback, T. Diaz de la Rubia, "Displacement Damage in Irradiated Metals and
Semiconductors," Solid State Physics 51 (1997) 281-402.



Electronic	Stopping



Fissioning of the isotope 235U to form fission products (FPs) and neutrons. In the
reaction shown, the FPs are 140Cs and 90Rb (there are also 6 neutrons produced in
this reaction). The arrows are meant to indicate qualitatively relative differences
between the product particle velocities.

92
235 U + 0

1n ⎯→⎯ 92
236 U * ⎯→⎯ 55

140 Cs (66 MeV) + 37
90 Rb (101 MeV) + 6 0

1n



Electronic	Energy	Loss	and	Nuclear	
Energy	Loss	Partitioning	for
66	MeV	Cs	vs.	101	MeV	Rb
(SRIM	simulation	results)



Fission	track	or	swift	heavy	ion	track	damage

TEM micrographs showing ion tracks produced by 800 MeV H+ fission events originating on Bi atoms in
the oxide superconductor, Bi-2212. Samples irradiated in the LANL-WNR proton irradiation facility. (a)
Side view of ion tracks; (b) End-on view of a single ion track. This image, obtained using atomic
resolution TEM, shows that the core of the ion track is amorphous, not crystalline. The surrounding
matrix material is crystalline. Micrographs courtesy of K. Sickafus & D. Phillips, Los Alamos National
Laboratory.



Electronic	stopping	gone	bonkers!

Schematic drawing of a
crystalline material
before (left) and after
(right) irradiation with
a swift heavy ion such
as a fission fragment.
The fission fragment
ionizes the target atoms
causing these
positively-charged
atoms to repel one
another. This process is
known as Coulomb
Explosion.
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Consider an ion of energy E traversing a solid and losing energy by successive nuclear
and electronic scattering events. When all is said and done, this ion will come to rest
in the solid, having dissipated all of its kinetic energy, E. For a given energy, E, the
linear rate at which the ion loses energy, dE/dx, is known as the stopping power of the
solid. The total stopping power of the target is the sum of the nuclear and electronic
stopping powers:

where (dE/dx)nuclear and (dE/dx)electronic are the nuclear and electronic stopping powers,
respectively. Using Eqn. (4.1), we can write an expression for the range, R, of an ion in
a solid. The ion range, R, is simply the reciprocal of the stopping power, integrated
from the position of the ion at birth to its position when it comes to rest:

where E = E0 is the ion energy upon birth and E = 0 is the ion kinetic energy when it
comes to rest at the end-of-range.





Displacement	Damage

We will try to quantify damage
production rates in solids under
irradiation (by damage we will mean
stable interstitial-vacancy (i-v) pairs)



Kinetic energy deposition in a crystalline solid by a fast neutron (n). The neutron imparts kinetic
energy to a lattice atom and displaces the atom from its lattice site. This atom is called a primary
knock-on atom (PKA). The PKA displaces additional lattice atoms which become secondary
knock-on atoms (SKAs). The ensemble of displaced atoms is known as a displacement cascade.



Before	displacement

After	displacement

Frenkel	Pair (i-v pair)	Formation	Under	Irradiation



It	is	interesting	that	the	process	of	making	one	point	defect	in	a	solid	actually	
makes	two	point	defects!

The	process	of	producing		a	point	defect	begins	with	knocking	
one	atom	off	of	its	lattice	site	into	an	interstice in	the	lattice.	
This	produces	an	interstitial	(i)	atom.

However,	at	the	same	time,	a	vacancy	(v) is	produced,	because	
the	knock-on	atom	leaves	behind	an	empty	lattice	site.

In some instances, the energy of the projectile ion that initiates the knock-on event is sufficiently low that it comes to rest
following its knock-on collision. It then spontaneously fills the vacated site and only one net defect is produced (the
interstitial). This is known as a replacement collision.



Kinchin-Pease	(KP)	Formula

G. H. Kinchin, R. S. Pease, “The Displacement of Atoms in Solids by
Radiation,” Reports on Progress in Physics 18 (1955) 1-51.
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Kinchin-Pease	Eqn.



The	critical	(or	cutoff)	energy,	Ec
In a metal, a reasonable estimate for Ec is given by
(see, e.g., Olander [Ch. 17]):

where MT is the target atom mass in atomic mass
units. Thus, for copper (MCu = 63 amu), Ec = 63
keV, such that for ion energies above E = 63 keV,
we assume only electronic stopping occurs.

Ec keV[ ] ≅ MT amu[ ]



Kinchin-Pease	Eqn.



Estimating Frenkel	Pair (i-v pair)	Formation	Under	Irradiation	Using	the	Kinchin-Pease	Formula

The black curve, with 
calculated points displayed 
as solid circles, shows Nd vs. 
E for 235U irradiations of the 
actinide-host oxide, U1Y6O12, 
based on SRIM simulations 
and assuming Ed = 40 eV for 
all target atoms.

*		Frenkel	pair	formation	is	equal	to	the	
number	of	displacements	produced	per	
projectile	ion,	Nd



i-v pair	production	and	dpa
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One dpa represents the dose at which every target atom has been knocked from
its lattice site, on average, one time. The conversion from units of (i-v
pairs)/nm/ion to displacements per atom (dpa) is given by:

In ion irradiations, the depth distributions of displacements are generally referred to as damage
profiles. Each damage profile exhibits a maximum at some depth prior to the end-of-range of
the ion. The dose at this maximum is termed the peak dpa.



SRIM	simulation	of	i-v	pair	production	for	He	ions	in	UY6O12



SRIM	simulation	of	i-v	pair	production	for	U	ions	in	UY6O12



Perfect	Lattice



Perfect	Lattice	+	Interstitial	Point	Defect
In	a	monoatomic	solid,	this	would	be	called	a	self-interstitial	atom



Perfect	Lattice	+	Freely-Migrating Self-Interstitial	Atom	(SIA)



Perfect	Lattice	+	Freely-Migrating SIA #1



Perfect	Lattice	+	Freely-Migrating SIA #2



Perfect	Lattice	+	Freely-Migrating SIA #3



Perfect	Lattice	+	Freely-Migrating SIA #4



Perfect	Lattice	+	Several	Freely-Migrating SIAs



Perfect	Lattice	+	Interstitial	Loop
Loop	condensed	from	freely-migrating	SIAs



Perfect	Lattice	+	Vacancy	Point	Defect



Perfect	Lattice	+	Vacancy	Point	Defect



Vacancy	Before	Migration



Vacancy	After	Migration



Perfect	Lattice	+	Freely-Migrating Vacancy



Perfect	Lattice	+	Freely-Migrating Vacancy #1



Perfect	Lattice	+	Freely-Migrating Vacancy	#2



Perfect	Lattice	+	Freely-Migrating Vacancy	#3



Perfect	Lattice	+	Freely-Migrating Vacancy	#4



Di	- Vacancy	Formation



Di	- Vacancy	Formation



Di	- Vacancy	Migration



Freely-Migrating Vacancy	Point	Defects	- Void	Nucleation



Freely-Migrating Vacancy	Point	Defects	- Void	Formation



Interstitial	(i)	- Vacancy	(v)	Migration



i	- v	Recombination	- just	prior	to	recombination	



i	- v	Recombination	- after	recombination
Note	that	both	i and	v point	defects	are	annihilated	by	this	process	



Perfect	Lattice	is	Restored	Following	i	- v Recombination



So	What	Have	We	Learned?

1. Freely-migrating point defects (interstitials and 
vacancies) aggregate in crystal lattices to form 
extended defects (dislocation loops and voids).

2. Extended defects (dislocation loops and voids) 
are bad because they produce macroscopic 
property alterations such as embrittlement and 
swelling.

3. The best way to achieve radiation resistance in 
a material exposed to irradiation is to enhance 
the mechanism of interstitial-vacancy (i-v) 
recombination. This is a harmless radiation 
damage mechanism because it serves to 
restore the perfect crystal lattice.



Radiation	Damage	Evolution
Radiation	damage	is	a	competition	between	the	harmless	
annihilation	of	irradiation-induced	point	defects	by	i-v
recombination	and	the	harmful	condensation	of	point	defects	to	
form	extended	lattice	defects	such	as	dislocation	loops	and	voids.

These	harmless	and	harmful	damage	mechanisms	are	at	crossed
purposes:	one	works	to	restore	the	perfect	crystal	lattice,	while	
the	other	works	to	disrupt	the	lattice	by	introducing	detrimental	
lattice	imperfections.

Much	of	the	field	of	radiation	damage	research	is	devoted	to	
developing	an	understanding	of	the	interplay	between	these	
radiation	damage	mechanisms	(e.g.,	chemical	rate	theory).



Fate	of	Irradiation-Induced	Interstitials	(Chemical	Rate	Theory)

}BAD!
} Harmless

Frenkel pair production rate

i-v recombination rate



So	how	many	freely-migrating	point	defects	are	produced	
under	irradiation	conditions?

This	is	the	starting	point	for	assessing	radiation	damage	effects.

The	rate	of	creation	of	freely-migrating	point	defects	produced	
during	irradiation	is	called	the	production	rate.

The	production	rate	of	point	defects	depends	specifically	on	the	
amount	of	energy	transferred	to	lattice	atoms	by	the	irradiating	
species	(for	instance,	energetic	ions	in	an	ion	beam	irradiation	
experiment).



Qualitatively,	it	is	always	true	that	the	higher	the	energy	of	the	
projectile	particle	impinging	on	a	solid	target,	the	greater	the	

number	of	point	defects	generated	in	the	target.

To illustrate this point, we show next computer simulation 
results comparing and contrasting point defect 
formation in an oxide compound known as spinel, 
MgAl2O4, for two projectiles with very different kinetic 
energies:

1. 400 eV Magnesium (Mg) ion irradiation of MgAl2O4

2. 10 keV Magnesium (Mg) ion irradiation of MgAl2O4

Each	simulation	shows	a	“cascade”	of	displaced	target	atoms	produced	by	a	single	
incident	projectile	ion.



400	eV	Mg+ ion-induced	
“cascade”	in	MgAl2O4



10	keV	Mg+ ion-induced	
“cascade”	in	MgAl2O4



Ion	cascade	at	a	
Cu-Nb interface



Introduction	to	Ion-Solid	
Interactions	

(the	two-body	collision)



So,	how	much	energy	can	be	transferred	from	a	projectile	
particle,	such	as	an	ion,	to	a	lattice	atom	in	a	target	solid?

To	solve	this	problem,	it	is	useful	to	consider	
details	of	the	so-called	Two-Body	Interaction	
or	Two-Body	Collision.

This	problem	was	made	famous	by	
astronomers	when	they	worked	out	details	
concerning	the	orbital	motion	of	the	planets	
about	the	Sun.



Two-Body	Collision

Calculation	of	the	energy	transferred	
during	the	scattering	interaction







What	is	the	Rutherford	(Coulomb)	
potential	of	interaction?



What	is	the	Rutherford	(Coulomb)	
potential	of	interaction?



What	is	the	value	of	the	constant,	e2?



What	is	the	value	of	the	constant,	e2?







Two-Body	Collision
Energy	transfer	calculation

Ordinarily, in a first-year physics class,
you would be asked to solve this
problem using Conservation of Energy
and Conservation of Momentum
considerations.

This problem is algebraically intractable using these rules of
conservation. However, the problem is solved elegantly
using a transformation of coordinates to the Center-of-Mass
(CM) Frame-of-Reference.









Proof	that	the	net	momentum	in	the	Center-of-Mass	(CM)	coordinate	system	
is	zero - at	all	times.





Calculate	the	energy	transfer	from	projectile	m1 to	target	atom	m2.	

Step	1.	Transform	from	laboratory to	CM coordinates.

Subtract	the	velocity	of	the	CM (				)	from	the	initial	velocity	of	
projectile	m1 (						)	and	target	atom	m2 (							).	





Calculate	the	energy	transfer	from	projectile	m1 to	target	atom	m2.	

Step	2.	Perform	the	scattering	interaction	in	CM coordinates.

Properties of the Center-of-Mass (CM) :

1. The net linear momentum in CM coordinates is zero.
2. In the absence of external forces (an inertial frame-of-

reference), the velocity of the center of mass is constant
(equal to     ).

3. In a two-body system, the center-of-mass must lie on the 
line adjoining the two particles at all times.

4. In a two-body system, the velocity vectors for the two 
particles in CM coordinates are parallel at all times.

5. In a two-body system, the magnitude of the velocity of 
each particle in CM coordinates is unchanged by the 
collision.







Calculate	the	energy	transfer	from	projectile	m1 to	target	atom	m2.	

Step	3.	Transform	from	CM to	laboratory coordinates.

Add	the	velocity	of	the	CM (				)	to	the	final	CM velocity	of	
projectile	m1 (						)	and	target	atom	m2 (						).	

Finally,	solve	for							using	trigonometry	and	convert	to	
kinetic	energy	using:









Trigonometry	(Law	of	Cosines	expression)

Then:

But:



Maximum	Kinetic	Energy	Transfer
Two-Body	Collision

Head-on	Collision:



Kinetic	Efficiency	Factor,	L



Kinetic	Efficiency	Factor
e- /	e-,	He,	O,	Cu,	U



Kinetic	Efficiency	Factor
He	/	e-,	He,	O,	Cu,	U



Kinetic	Efficiency	Factor
O	/	e-,	He,	O,	Cu,	U



LSS	Energy	Partitioning	Theory:	Partitioning	of	PKA	
Energy	Between	Electronic	and	Nuclear	Stopping

Lindhard,	J.	and	M.	Scharff (1961).	"Energy	Dissipation	of	Ions	in	the	keV Region."	
Physical	Review 124(1):	128-130.
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Scattering	by	Screened	Coulomb	Fields	(Notes	on	Atomic	Collisions,	I)."	Mat.	Fys.	

Medd.	Dan.	Vid.	Selsk. 36(10):	1-32.

Winterbon,	K.	B.,	P.	Sigmund,	and	Sanders,	J.	B.	(1970).	"Spatial	Distribution	of	Energy	
Deposited	by	Atomic	Particles	in	Elastic	Collisions."	Mat.	Fys.	Medd.	Dan.	Vid.	Selsk.

37(14):	1-73.



Derivation	of	the	LSS	integro-differential	equation



Shorthand	notation



Differential	Probabilities



LSS	integro-differential	equation



LSS,	the	hard-sphere	potential,	and	the	Kinchin-Pease	formula



LSS-Hard-sphere	potential

This	is	the	famous	Kinchin-Pease	
equation!





LSS	screened	Coulomb	nuclear	
stopping	formula:

LSS	universal	differential	cross-section	



LSS	electronic	and	nuclear	stopping	
formulas:	(1)	Electronic



Low-E electronic	stopping



High-E electronic	stopping



Spline fit	of	Low-E	High-E	electronic	
stopping	powers

(Biersack and	Haggmark 1980)



Multi-component	solids
Use	the	Principle	of	the	Additivity of	Stopping	

Powers (also	known	as	Bragg’s	Rule)	



Example calculations of electronic and nuclear 
energy partitioning: I+ ions in spinel (MgAl2O4)

Sn(E)

Se(E)



Stopping	power	versus	linear	energy	loss	rate



Example calculations of electronic and nuclear 
energy partitioning: I+ ions in spinel (MgAl2O4)

(dE/dx)n

(dE/dx)e



Example calculations of electronic and nuclear energy partitioning: 
I+ ions in spinel (MgAl2O4)

(dE/dx)n

(dE/dx)e



Example calculations of electronic and nuclear energy 
partitioning: I+ ions in spinel (MgAl2O4)

(dE/dx)n

(dE/dx)e
(dE/dx)t



Example calculations of electronic and nuclear energy 
partitioning: I+ ions in spinel (MgAl2O4)

PKA	energy	(E)	as	a	function	of	depth	(x)	in	the	target

Range	(R)
=	9.4	µm

Initial	
Energy	(E)	
=	72	MeV



Example calculations of electronic and nuclear energy 
partitioning: I+ ions in spinel (MgAl2O4)

(dE/dx)n

(dE/dx)e
72	MeV	 I+ ions in 
spinel (MgAl2O4)


