Behaviour of materials containing actinides and long lived radionuclides

Part I

Artificial crystalline materials doped with Pu-238

Dr. Boris Burakov

V.G. Khlopin Radium Institute (KRI), St. Petersburg, Russia E-mail: burakov@peterlink.ru Main target of this presentation is to overview all uncertainties related to the modeling of long-term behavior of radwaste forms under self-irradiation

V.G. Khlopin Radium Institute (KRI) is located in St. Petersburg (*Main Site and Historical Site*) and Gatchina (*hot-cell facility*) – 40 km from St. Petersburg

About V.G. Khlopin Radium Institute (KRI)

- Radium Institute was established in 1922 under the guidance of academician
 V. I. Vernadsky. It is the oldest research institute included into the State Corporation "Rosatom"
- Academician Vitaliy Grigoryevich Khlopin initially was a deputy director of Radium Institute (and later he became a formal Director). Now institute has his name
- First European cyclotron was built in KRI (1936-1937) and the first sample of Soviet plutonium (Pu) was obtained here (1945)

Cyclotrone (first in Europe) built at KRI in 1936-1937

Main fields of current KRI research and activity

- Reprocessing of spent nuclear fuel
- Nuclear waste management
- Development of glass and ceramic waste forms for HLW immobilization
- Study of radiation damage effects in solids
- Monitoring of contamination
- Isotope production
- Training of young international scientists in the field of applied radiochemistry and nuclear waste management. Tutorials with real radionuclides

KRI hot-cell facility (Gatchina, 40 km from Saint-Petersburg)

Chain of glove-boxes at KRI for work with highly radioactive actinides

Background (1)

- Self-irradiation affects (destroys) crystalline structure of radionuclide host-phase, which can become fully amorphous
- Damage of crystalline structure under self-irradiation can be accompanied with essential decrease of chemical durability. Matrix swelling is possible. As a result of swelling the crack formation (and mechanical destruction) is possible
- Self-irradiation affects glass matrix too. As a result glass recrystallization and mechanical destruction is possible

Background (2)

- Some crystalline phases demonstrate high resistance to irradiation: zirconia (cubic, tetragonal and monoclinic), (Zr,...)O₂; monazite, (Ce,Ln,Gd)PO₄; UO₂ and PuO₂
- Zr-pyrochlore, Zr2Gd2O7, remains crystalline at very high dose of irradiation but it changes crystalline structure from pyrochlore to fluorite
- Zircon, ZrSiO4, and Ti-pyrochlore, Gd2Ti2O7, become amorphous at comparable doses, however, their chemical durability changes differently

Self-corrosion of metallic can with PuO₂

Actinide Research Quarterly, LANL, 2004, 2-nd quarter, p.4

Gas release as a result of radiolysis

La-monazite ceramic (La,Pu)PO₄ doped with 8.1 wt.% Pu-238 in water after 6 years of storage at KRI

Main uncertainties

- Behavior of solid solution under self-irradiation is not the same to one of pure undoped host-phase under external irradiation (for example, by heavy ions)
- Optimal level of radionuclide loading into crystalline lattice of host-phase is unclear
- Destruction of solid solutions (with formation of separate phases of radionuclides) under selfirradiation is possible

HRTEM images of non-radioactive natural and synthetic zircon after at different cumulated dose (Weber W.J. et al. 1994)

Radiation damage study: how to simulate thousands of years?

ACTIVITY (Bq/g)

²³⁹Pu – 2.3E+09 (usual valence state 4+) ²⁴¹Am – 1.3E+11(usual valence state 3+)

²³⁸Pu – 6.3E+11 (almost 275 times higher than ²³⁹Pu !)

²⁴⁴Cm - 3.0E+12 (usual valence state 3+)

Accelerated radiation damage study using ²³⁸Pu and ²⁴⁴Cm is very informative

However

Only few laboratories in the world can handle such extremely radioactive materials

Ceramic based on Ti-pyrochlore, (Ca,Gd,Hf,Pu,U)₂Ti₂O₇ developed by Lawrence Livermore National Laboratory, USA, for excess Pu immobilization

RECIPE (in wt.%)

- $UO_2 23.7$
- $PuO_2 11.9$
- $Gd_2O_3 8.0$
- $HfO_2 10.7$
- CaO 10.0
- $TiO_2 35.7$

Ti-pyrochlore ceramic (Ca,Gd,Hf,Pu,U)₂Ti₂O₇

doped with 8.7 wt. % Pu-238

Samples of this ceramic were synthesized in NIIAR (Dimitrovgrad, Russia) and sent to the V.G. Khlopin Radium Institute for investigation under support of Lawrence Livermore National Laboratory

Zircon/zirconia ceramic (Zr,Pu)SiO₄/(Zr,Pu)O₂

doped with 4.7 wt. % Pu-238

Samples of this ceramic were synthesized at V.G. Khlopin Radium Institute

XRD patterns of ²³⁸Pu-doped (8.7 wt.%) Ti-pyrochlore ceramic (Ca_{1.16}Gd_{0.23}Hf_{0.30}Pu_{0.24}U_{0.42})Ti₂O₇ after cumulative dose (in alpha decay/m³x10²³): 1) 26; 2) 43; 3) 57; 4) 82; 5) 110; 6) 130

25

New-formed phases in matrix of Ti-pyrochlore ceramic ?

Destruction of solid solution under self-irradiation ?

Matrix swelling !

Change of pyrochlore ceramic density from 4.8 to 4.3 g/cm³

Ceramic behavior under self-irradiation

1) $(Ca_{1.16}Gd_{0.23}Hf_{0.30}Pu_{0.24}U_{0.42})Ti_2O_7$ with pyrochlore structure 2) $(Zr_{0.955}Pu_{0.045})SiO_4$ – zircon and tetragonal $(Zr_{0.964}Pu_{0.036})O_2$

Start of metamictization dose 26 alpha-decays/m³x10²³

Zircon phase is fully metamict dose 530 alpha-decays/m³x10²³

Synthetic zircon (Zr_{0.977}Pu_{0.023})SiO₄ 2.4 wt.% ²³⁸Pu

accumulated dose (alpha-decays/g x10¹⁷):

1) и 2) 0,1 3) 2 4) 51 5) 22 6) 51

Reflected light microscope image of ²³⁸Pu-doped (4.7 wt.%) ceramic based on zircon, (Zr,Pu)SiO₄ and 15 wt.% tetragonal zirconia, (Zr,Pu)O₂ (obtained by cold pressing followed by sintering in air)

Matrix swelling ?

Should take place for zircon-based ceramic but we did not observe

XRD patterns of double-phase ceramic based on:

 $(Zr_{0.955}Pu_{0.045})SiO_4 - zircon phase Zr$ $(Zr_{0.964}Pu_{0.036})O_2 - tetragonal zirconia ZO$

accumulated dose (alpha-decays/m³x10²³):

1) 3; 2) 13; 3) 30; 4) 51; 5) 65; 6) 91; 7) 113; 8) 134; 9) 151; 10) 188

Cubic zirconia ceramic $Zr_{0.79}Gd_{0.14}Pu_{0.07}O_{1.93}$

doped with 9.9 wt. % Pu-238

Samples of this single-phase ceramic were synthesized at V.G. Khlopin Radium Institute

Behavior of (111) XRD reflection of ²³⁸Pu-doped (9.9 wt. %) cubic zirconia after cumulative dose (in alpha decay/m³x10²³): 1) 3; 2) 27; 3) 62; 4) 110; 5) 134; 6) 188; 7) 234; 8) 277

Accumulation of defects under self-irradiation and repeated self-annealing?

No swelling for cubic zirconia ceramic!

What about other crystalline phases with the same cubic fluorite-type structure?

Behavior of unit-cell parameter in ²³⁸Pu-doped cubic fluorite-type structured zirconia and plutonia

Burakov B.E. and Yagovkina M.A., A study of accelerated radiation damage effects in PuO₂ and gadolinia-stabilized cubic zirconia, Zr_{0.79}Gd_{0.14}Pu_{0.07}O_{1.93}, doped with ²³⁸Pu. J. Nucl. Mater., Vol. 467, pp. 534-536 more than 11 years of this research

Different behavior of phases with the same crystalline structure under self-irradiation!

La-monazite ceramic (La,Pu)PO₄

doped with 8.1 wt. % Pu-238

Samples of this ceramic were synthesized at V.G. Khlopin Radium Institute

XRD patterns of ²³⁸Pu-doped (8.1 wt.%) La-monazite (La,Pu)PO₄ ceramic after cumulative dose (in alpha decay/m³x10²³):
 1) 1.5; 2) 19; 3) 47; 4) 72; 5) 93; 6) 119

41

La-monazite, (La,Pu)PO₄ doped with 8.1 wt. % Pu-238 completely different crystalline structure – but similar to cubic zirconia behavior under self-irradiation (so far !)

No swelling in ceramic based on La-monazite doped with 8.1 wt.% Pu-238

Change of La-monazite ceramic color !

light-blue → grey

change of Pu valence state ?

Pu-monazite ceramic PuPO₄

content of Pu-238 - 7.2 wt.%

Samples of this ceramic were synthesized at V.G. Khlopin Radium Institute

XRD patterns of ²³⁸Pu-doped monazite PuPO₄ ceramic after cumulative dose (in alpha decay/m³x10²³): 1) 1.3; 2) 17; 3) 42

Pu-monazite, PuPO₄ containing 7.2 wt. % Pu-238

very unstable under self-irradiation!

What is optimal actinide loading into monazite structure?

we do not know

Strong swelling (even breaking into separate pieces) of ceramic based on Pu-monazite!

Change of Pu-monazite ceramic color !

dark-blue → black

change of Pu valence state ?

Single crystals of Eu-monazite, $(Eu_{0.937}Pu_{0.063})PO_4$ doped with 4.9 wt.% ²³⁸Pu

Single crystals of Eu-monazite, (Eu_{0.937}Pu_{0.063})PO₄ doped with 4.9 wt.% ²³⁸Pu

Single crystals of Eu-monazite, (Eu_{0.937}Pu_{0.063})PO₄ doped with 4.9 wt.% ²³⁸Pu

7 years after sinthesis accumulated dose 52 x10¹⁷ alpha-decay/g

Mechanical destruction and particle formation as a result of alpha-decay?

Possible mechanism of colloid formation ?

Principal features of ceramics and crystals doped with Pu-238

Sample, formula of main phase	Bulk Pu content and distribution, wt. % el.	²³⁸ Pu content, wt.% el.	Geometric density, g/cm ³	
			initial	at highest cumulative dose
Ti-pyrochlore ceramic (Ca,Gd,Hf,Pu,U) ₂ Ti ₂ O ₇	10.5 inhomogeneous from 3.4 to 26.8	8.7	4.8	4.3 visually observed cracks
Zircon/zirconia ceramic (Zr,Pu)SiO ₄ /(Zr,Pu)O ₂	5.7 homogeneous	4.7	4.4	no data no cracks visually observed
Cubic zirconia ceramic Zr _{0.79} Gd _{0.14} Pu _{0.07} O _{1.99}	12.2 homogeneous	9.9	5.8	5.8
La-monazite ceramic (La,Pu)PO ₄	9.9 homogeneous	8.1	4.7	4.7
Pu-monazite ceramic PuPO ₄	65.2 homogeneous	7.2	4.9	no data visually observed cracks
Zircon single crystal (Zr,Pu)SiO ₄	3.3 inhomogeneous from 1.9 to 4.7	2.7	no data	no data visually observed cracks
Eu-monazite single crystal <mark>(Eu,Pu)PO₄</mark>	6.0 homogeneous	4.9	no data	no data visually observed shelling and particle formation

55

Normalized Pu mass losses (NL) from matrices of ²³⁸Pu-doped ceramics after leach test (in deionized water, at 90° C for 28 days) depending on cumulative dose

Corrections for ceramic porosity were not estimated

Cumulative dose in ceramic doped with ²³⁸ Pu alpha decays/m ³ x 10 ²³	NL g/m²	Equal years of storage calculated for the same ceramic but doped with ²³⁹ Pu			
Cubic zirconia ceramic, Zr _{0.79} Gd _{0.14} Pu _{0.07} O _{1.99}					
11	0.04	30			
56	0.35	140			
81	0.37	200			
127	0.24	320			
Zircon/zirconia ceramic, (Zr,Pu)SiO ₄ + 15 % (Zr,Pu)O ₂					
7	0.01	30			
31	0.04	150			
43	0.05	210			
66	0.04	330			
Ti-pyrochlore ceramic, (Ca,Gd,Hf,Pu,U) ₂ Ti ₂ O ₇					
29	0.22	80			
49	0.28	140			
100	0.84	280			
133	1.93	380			

Conclusions or questions ?

- Possible destruction of solid solution (in Ti-pyrochlore ceramic) as a result of self-irradiation?
- What is optimal loading level of actinides into hostphases to preserve stability of solid solution?
- Mechanical destruction and formation of tiny particles as a result of alpha-irradiation? *Possible mechanism of colloid formation?*
- Change of Pu valence state (from 3+ to 4+) in monazite under self-irradiation? If so, what does it cause?

Thank you!