Joint ICTP-IAEA Workshop on Radiation Effects in Nuclear Waste Forms and their Consequences for Storage and Disposal

Trieste, Italy

September 12 – 16, 2016

EXPERIMENTAL TECHNIQUES FOR RADIATION DAMAGE EFFECTS

Maik Lang

University of Tennessee
Department of Nuclear Engineering
Knoxville, TN, USA
mlang2@utk.edu

University of Tennessee

Knoxville, Tennessee

Smokey Mountain National Park

Durable Materials for Radionuclide Immobilization

Performance in extreme environments:

- ▷ elevated temperature
- changing chemical composition

Intergrowth of natural pyrochlore (Py) and zirconolite (Z)

G.R. Lumpkin, *Elements* (2006)

Complex structural and chemical modifications:

- ▷ simple defects and defect clusters
- order-disorder and crystalline-amorphous transformations
- partial recrystallization of waste glasses
- ▷ defect mobility and damage recovery at high temperature

Advanced characterization techniques required to study radiation effects in nuclear waste forms and their consequences for storage and disposal

Ion track in $Gd_2Zr_2O_7$ (12-MeV C_{60})

J.M. Zhang et al., <u>J. Appl. Phys.</u> (2010)

Simulation of Radiation Effects: Low Energy Ion Beams

Tandem Accelerator (E < 25 MeV) available in many laboratories

Ion-beam experiments: MeV energies

- ⇒ more realistic simulation of radiation effects (nuclear dE/dx)
- ⇒ small volume of modified material
- many bulk characterization techniques are not applicable

Simulation of Radiation Effects: High Energy Ion Beams

<u>Ion-beam experiments: GeV energies</u>

- ⇒ different ion-matter interactions (electronic dE/dx)
- ⇒ large volume of modified material
- ⇒ access to many bulk characterization techniques (e.g., X-ray and neutron scattering)

www.gsi.de

Swift Heavy Ion-Beam Irradiation Experiments

Sample chamber

diameter: 100 μm thickness: 50 μm thickness: 12.5 μm

GSI Helmholtz Center (Germany) and Joint Institute for Nuclear Research (Russia)

Synchrotron X-ray Characterization

X-rays

 \Rightarrow X-ray energy: 5 – 100 keV

⇒ flux at sample: ~10¹¹ photons/s

⇒ beam-spot size: ~10 μm

sample positioning

- movable ionization chamber
- ⇒ 1d-scans and 2d-scans
- ω-scans for precise sampledetector distance determination

XRD and **XAS** measurement

- ⇒ ionization chambers
- ⇒ exposure times: sec min

Advanced Photon Source Argonne National Laboratory

National Synchrotron Light Source Brookhaven National Laboratory

Synchrotron X-ray Characterization Techniques

Redox Response of Actinide Oxides to Ion Irradiation

XRD patterns after irradiation:

- ⇒ peak shift
 unit-cell expansion
- ⇒ peak broadening strain, grain-size reduction

Single-impact behavior:

⇒ linear region followed by saturation due to track-overlap.

C.L. Tracy, et al., Nature Communications 6 (2015).

Redox Response of Actinide Oxides to Ion Irradiation

Ce K-edge shift:

- decreased core electron binding energy
- ⇒ increased electron screening
- ⇒ partial reduction from Ce⁴⁺ to Ce³⁺

Structural modifications:

- ⇒ Ce³⁺ is ~20% larger than Ce⁴⁺
 (unit-cell expansion)
- ⇒ cation-size mismatch (microstrain)

f^0	f ¹	f ²	f^3
La	Се	Pr	Nd
3+	3+ 4+	3+ 4+	3+
Ac 3+	Th	Pa	U
3+	4+	4+ 5+	4+ 5+ 6+

⇒ Cation valence reduction in CeO₂ leads to a fundamentally different radiation response as compared to ThO₂ (no reduction).

C.L. Tracy, et al., Nature Communications 6 (2015).

Defect-Annealing Studies at High Temperature

Hydrothermal diamond anvil cell (HDAC)

⇒ Sample-annealing chamber for nuclear materials (up to 1300 K)

- ⇒ isochronal and isothermal annealing studies
- ⇒ homogeneous heating
- ⇒ superior temperature control
- ⇒ multiple samples in parallel
- ⇒ in situ access for X-rays
- ⇒ different atmospheres

Defect-Annealing Studies at High Temperature

ThO₂ and CeO₂ irradiated with 950 MeV ¹⁹⁷Au annealed within an HDAC to 1070 K

- ⇒ Defect annealing at high-*T*
- □ Reduction of unit-cell parameter and microstrain
- One-step process for ThO₂ twostep process for CeO₂
 (consistent with different defects)
- ⇒ No full recovery up to 1070 K

R.I. Palomares, et al., <u>Journal of</u> <u>Applied Crystallography</u> (2015).

Synchrotron XRD: Amorphization and Disordering

Transmission Electron Microscopy: Track Morphology

Gd₂Ti₂O₇ 2.2-GeV ¹⁹⁷Au 40 keV/nm; RT

changing composition

Gd₂Ti₁O₅ 2.2-GeV ¹⁹⁷Au 40 keV/nm; RT

decreasing energy density

J. Zhang, M. Lang, M. Toulemonde, R. Devanathan, R.C. Ewing, W.J. Weber, *J. Mater. Res.* (2010).

Gd₂Ti₂O₇ 1.1-GeV 101Ru 20 keV/nm; RT

5 nm

decreasing

Gd₂Ti₂O₇ 2.2-GeV ¹⁹⁷Au

40 keV/nm; **8 K**

Limitation of Electron and X-ray Probes

Z-dependence of X-ray (electron) interactions:

- Very small scattering contributions from low-Z elements
 ⇒ oxygen sublattice basically inaccessible for oxides
- ▷ elements with comparable Z contribute equally
 - ⇒ atomic positions of similar cations indistinguishable

Incident

X-Ray (or electron)

Scattered

Limitation of Diffraction Experiments

Incident

X-rays (or electrons)

Diffraction experiments:

- □ access to long-range structure of crystalline materials
- ▶ no information of medium-range and short-range order
 ⇒ no structural information from amorphous solids (e.g., wasteglass)
- ▷ diffuse scattering discarded during structural refinement
 - ⇒ local defect structure and disorder inaccessible

Scattered

X-rays (or electrons)

Pair Distribution Function (PDF) Analysis

 \Rightarrow g(r) is the probability of finding an atom pair at certain separation r

⇒ probability is high at low-*r* (intense peaks)

⇒ probability approaches unity at high-*r* due to atomic motion

$$g(r) - 1 = \frac{G(r)}{4\pi r \rho_0} = \frac{\rho(r)}{\rho_0}$$

PDF Analysis of Radiation Effects in Materials

Real-Space Refinement of PDFs:

- ⇒ peak position: bond lengths
- ⇒ peak area: coordination number
- ⇒ peak width: thermal motion/disorder

Neutron PDF Analysis:

- ⇒ sensitive to oxygen and other low-Z elements
- detailed analysis of local defect structure
- ⇒ study of heterogeneous disorder that differs over lengthscales
- ⇒ access to local order in noncrystalline materials (glasses)

Neutron Total Scattering Experiments at ORNL

The Nanoscale-Ordered Materials Diffractometer (NOMAD)

- ⇒ neutron wavelength: 0.1 3 Å
- ⇒ flux on sample: 108 cm⁻²·sec⁻¹
- large detector coverage
- ⇒ high-resolution pair distribution function (PDF)
- ⇒ defects and local disorder
- sample mass: 150 mg

⇒ post-calorimetry measurements

NOMAD detector

high-energy ions (~1 GeV) essential for this approach

holder

ions

Order – Disorder Transformation in Pyrochlore Oxides

Order – Disorder Characterized by Neutron Scattering

- Disorder via neutron diffraction:
 - ⇒ lack of superstructure peaks

 - ⇒ analysis in real space required

ordered pyrochlore

Order – Disorder Transformation in Pyrochlore Oxides

Order – Disorder Transformation in Pyrochlore Oxides

Real-space refinement of neutron PDF data:

- ⇒ local weberite and long-range defect fluorite in all cases
- ⇒ intrinsic and extrinsic disorder has same structural behavior

Damage Evolution in Irradiated Pyrochlore Oxides

Er₂Sn₂O₇ irradiated with 2.2 GeV ¹⁹⁷Au ions as function of fluence

Average Structure (diffraction)

- ⇒ superstructure peaks disappear
- ⇒ no amorphization
- pyrochlore-fluorite transformation (order-disorder)

Local Structure (PDF)

- ⇒ peak broadening
- ⇒ no loss of peak area at higher r
- ⇒ pyrochlore-weberite transformation

Damage Cross Sections in Irradiated Pyrochlore Oxides

Neutron PDF: Disordering versus Amorphization

Disorder

- ⇒ peak broadening at higher-*r*
- \Rightarrow r > 8 Å structure is fluorite-like

Amorphization

- ⇒ reduced peak intensity at higher-*r*
- minimal peak broadening
- \Rightarrow r > 8 Å structure is pyrochlore-like (undamaged matrix)

Radiation – Induced Amorphization in Complex Oxides

Crystallinity → consistent short and long-range order

Amorphous → lack of long-range order

Radiation – Induced Amorphization in Complex Oxides

Complex oxides irradiated with 2.2 GeV ¹⁹⁷Au ions

Ion-induced amorphization in different complex oxides:

- Dy₂Sn₂O₇ isometric pyrochlore (more covalent bond character)
- Dy₂Ti₂O₇ isometric pyrochlore (more ionic bond character)
- **Dy₂TiO₅** orthorhombic

⇒ Different complex oxides form very similar amorphous phase

Radiation Effects in (Waste) Glass

PRL **101**, 175503 (2008)

PHYSICAL REVIEW LETTERS

week ending 24 OCTOBER 2008

Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO₂

P. Kluth, ^{1,*} C. S. Schnohr, ¹ O. H. Pakarinen, ² F. Djurabekova, ² D. J. Sprouster, ¹ R. Giulian, ¹ M. C. Ridgway, ¹ A. P. Byrne, ³ C. Trautmann, ⁴ D. J. Cookson, ⁵ K. Nordlund, ² and M. Toulemonde ⁶

¹Department of Electronic Materials Engineering, Australian National University, Canberra ACT 0200, Australia

²Department of Physics and Helsinki Institute of Physics, University of Helsinki, Helsinki, Finland

³Department of Nuclear Physics, Australian National University, Canberra ACT 0200, Australia

⁴Materials Research Department, Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany

⁵Australian Synchrotron, 800 Blackburn Road, Clayton VIC 3168, Australia

⁶Centre interdisciplinaire de recherche sur les Ions, les MAtériaux et la Photonique (CIMAP), Caen, France

Small Angle X-ray Scattering (SAXS)

Radiation Effects in (Waste) Glass

Neutron PDF-analysis: SiO₄-tetrahedra remain intact but change their stacking/arrangement

Conclusions

- ▶ Neutron total scattering with pair distribution function analysis (PDF) is suitable to characterize radiation effects in waste-form materials:
 - cation and anion sublattices (low-Z elements)
 - average (long-range) structure through diffraction experiments
 - local (short-range) structure through PDF analysis
- Neutron PDFs provides insight into formation of local defect structure in irradiated crystalline and amorphous materials
- ▷ Disordering in pyrochlore is complex involving two distinct processes that occur over different length scales:
 - local transformation to weberite-type structure
 - aperiodic modulation of these local units to form average defect-fluorite structure
- Synchrotron XRD and XAS with intense X-ray beam can be used to measure radiation-induced structural and electronic modifications

Research Team and Acknowledgement

Stanford University

Rodney Ewing

Cameron **Tracy**

University of Tennessee

Maik Raul Jacob Eric Lang Shamblin Palomares O'Quinn

Collaborations:

Christina Trautmann GSI Helmholtz Center (Germany)

Vladimir Skuratov - Joint Institute Nuclear Research (Russia)

Jörg Neuefeind

- Spallation Neutron Source (NOMAD, ORNL)

Mikhail Feygenson

- Spallation Neutron Source (NOMAD, ORNL)

Vitali Prakapenka

Advanced Photon Source (GSECARS, APS)

Changyong Park

Advanced Photon Source (HPCAT, APS)

Support:

