Universidade Federal de Minas Gerais

Thermal Analysis of Spent Nuclear Fuels Repositories

(Preliminary studies)

Fernando Pereira de Faria
Post-doctoral researcher at Department of Nuclear Engineering-UFMG
Belo Horizonte/Brazil

Present context of radioactive waste forms in Brazil

Brazilian power supply – 2015

Extracted from official data of government: Free online access in: www.mme.gov.br

Brazilian nuclear power plants

ANGRA 1

Operating since 1985

Electrical power: 657 MWe

Refueling: ~12 months

121 elements of UO₂ fuel

ANGRA 2

Operating since 2001

Electrical power: 657 MWe

Refueling: ~12 months

193 elements of UO₂ fuel

ANGRA 3

Under construction

Electrical power: 1405 MWe

Refueling: ~12 months

Nuclear Central Almirante Álvaro Alberto – Angra dos Reis – Rio de Janeiro

Management of radioactive waste forms in Brazil

Low and intermediate appropriate hangars with capacity until 2025

Final repository: Geological disposal?

Thermal analyzes in progress at DEN/UFMG on storage Spent Nuclear Fuel (SNF)

Advanced nuclear systems under study at DEN

• Fusion Fission System (FFS)

SNF reprocessed by UREX+ process and spiked with thorium

• Accelerator Driven Systems (ADS)

SNF reprocessed by GANEX process and spiked with thorium

• Very high-temperature gas-cooled reactor (VHTR)

SNF reprocessed fuel by UREX+ process and spiked with thorium

• Gas-cooled Fast Reactor (GFR)

SNF reprocessed fuel by UREX+ process and spiked with thorium

SNF properties

Spent Fuel	Enrichment	Burnup	Operation time	Final amount of fissile material
$UO_2 - From PWR$	3.2 %	33 GWd/tHM	3 yr	1.46 %
UO ₂ –From VHTR ⁽¹⁾	15.5 %	90.2 GWd/tHM	3 yr	9.2 %
$*(Th,TRU)O_2$ - From	15 %	97.8 GWd/tHM	3 yr	8.05 %
VHTR				
$**(Th,TRU)O_2 -$	12 %	2.376×10^{12}	20 yr	2.04 %
From ADS ⁽²⁾		GWd/tHM		

⁽¹⁾ Very High-Temperature Reactor; (2) Accelerator-Driven Subcritical Reactor System

These SNFs are being studied under wet storage and under geological disposal conditions

^{*}Obtained from UREX+ reprocessed technique.

^{**} Fuel consisting mainly of transuranic obtained from GANEX reprocessed technique.

SNF decay heat profiles

• Essential for specifying the heat sources.

• Obtained from Origen2.1 code studies.

Geometry considerations

- Spent Fuel Pool simulated (SFP):
 - ✓ Pool dimensions: (0.56 x 0.56 x 5) m with 1/4 of its effective volume filled with SNF.
 - ✓SF amount stored: 4 cylinders of 8.8 cm of radius and 4m of height spaced 18.8 cm center-to-center.

The problem:

Reactor Storage at SFP discharge for initial cooling

No external cooling system at t=0 and t=10 yr starting from the fuel discharge

How long the water takes to reach the boiling temperature?

Characteristics of heat sources

• The knowing of the heat fluxes at the cylinder surfaces

Decay heat values at t=0 and t=10 yr in W/tHM units

(Origen2.1 results)

Implementation

• Via the computational fluid dynamics package ANSYS CFX, based on finite elements method.

Techniques

- 1 (Open-top): Allows the heat transfer between the SFP and the environment.
- 2 (Sealed-walls): All the SFP walls set as adiabatic, and the fraction of water and air fixed at 0.95 and 0.05, respectively.

Materials physical properties and heat fluxes required

For Water and Air

✓ Molar mass, density, temperature, pressure, specific heat capacity, dynamic viscosity and thermal conductivity.

Fuel Type	Flux Values (W/m²)		
	<i>t</i> =0 yr	<i>t</i> =10 yr	
$VHTR-UO_2$	1.4423×10^4	1.057×10^3	
$PWR-UO_2$	4.03×10^4	2.76×10^{2}	
ADS- $(Th, TRU)O_2$	6.813×10^4	5.176×10^3	
VHTR-(Th, TRU)O ₂	1.9865 x 10 ⁵	5.087×10^3	

Results

Increasing water temperature rate (R_T) of the SFP in °C/s, and boiling time of water (T_b)

Spent Fuel types	$t = 0 \text{ yr}$ sealed-walls $R_T; T_b$	$t = 0 \text{ yr}$ open-top $R_T; T_b$	Spent Fuel types	$t = 10 \text{ yr}$ sealed-walls $R_T; T_b$	$t = 10 \text{ yr}$ open-top $R_T; T_b$
VHTR-UO ₂	0.031; 32.3 min	0.027; 37 min	PWR-UO ₂	5.863x10 ⁻⁴ ; 28.4hr	5.151 x10 ⁻⁴ ; 32.4hr
$PWR-UO_2$	0.086; 11.6 min	0.074; 13.5 min	VHTR-UO ₂	0.0023; 7.25 hr	0.0019; 8.8 hr
ADS-(Th,TRU)O ₂	0.145; 7 min	0.125; 8 min	VHTR-(Th,TRU)O ₂	0.0108; 1.54 hr	0.0092; 1.8 hr
VHTR-(Th,TRU)O ₂	0.422; 2.4 min	0.359; 2.8 min	ADS-(Th,TRU) O_2	0.0110; 1.5 hr	0.0095; 1.75 hr

> The sealed-walls and open-top values differ by less than 16%.

$$T_b \propto 1/q$$

Results

Geological repository concept

Swedish KBS-3V concept.

PWR disposal canister design (Nirex Ltd., 2005).

Ansys geometrical modeling

Modeling description

- It was used the Ansys transient thermal module.
- The four PWR fuel assemblies were represented by a parallelepiped with the real height of the fuel assembly.

Modeling description

• Ansys quantity: *Internal heat generation*, in W/m³.

$$\left(W / tHM \xrightarrow{\rho_{SF}} W / m^3\right)$$

Modeling description

Material	Density (kg/m³)	Thermal Conductivity (W/m °C)	Specific heat (J/kg °C)
PWR SF	9870	0.135	2640
Cast iron insert	7200	52	504
Cooper Canister	8900	386	383
Bentonite	1970	1	1380
Backfill	2270	3.2	1190
Rock	2650	3.2	815

Data from Choi, 2008; Lee et al., 2010.

✓ Thermal gradient along the vertical layer of rock: 30°C/km

Results

Temperature as a function of time on a PWR canister surface.

In progress ...

• Studies of spacing between canisters for PWR, VHTR and ADS spent fuels.

Acknowledgment

- To the CNEN (Comissão Nacional de Energia Nuclear), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), for the support to this work.
- To the ICTP for the financial support of my participation on this workshop