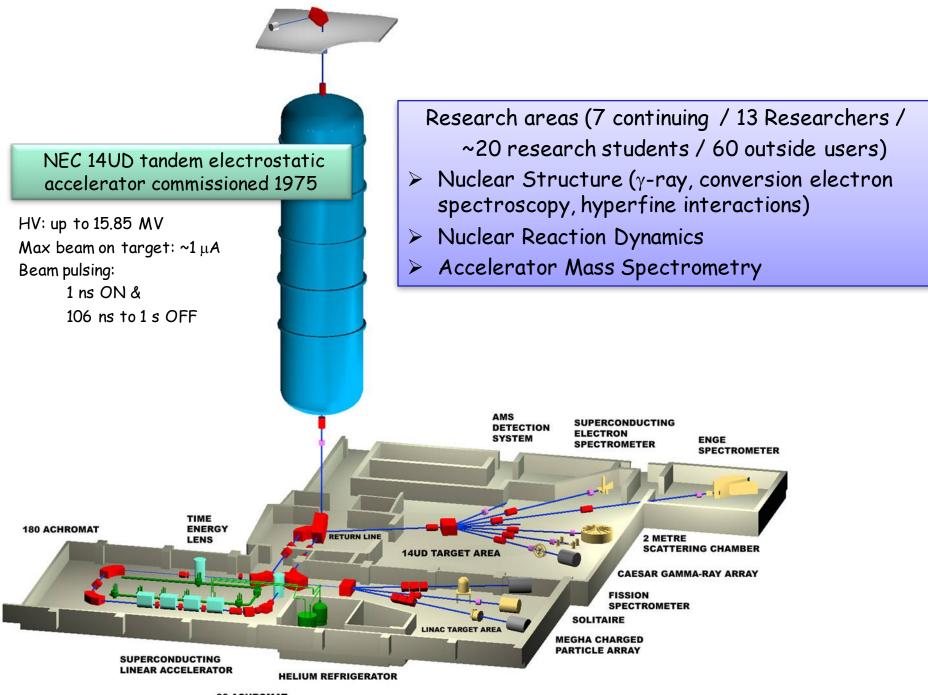


ENSDF analysis and utility codes I

T. Kibèdi (ANU)


Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

ICTP-IAEA ENSDF workshop, Trieste, August 2016

Heavy Ion Accelerator Facility, ANU Canberra

⁹⁰ ACHROMAT

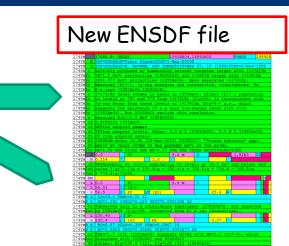
ENSDF files & editors

- ENSDF: 80 character/line (record or card) ASCII (American Standard Code for Information Interchange) file (Jag Tuli's talk on ENSD format)
- 17 record types: Identification, Normalization, Parent, Q-value, Level, Alpha, Beta, EC+beta+, Gamma, Reference, Cross reference, Delayed Particle, Product normalisation, Special record, History, Atomic Relaxation, End records
- Fixed length fields:
- VALUE

- Value is given as ASCII string to preserve accuracy reported in the original paper
- Uncertainty: symmetric, asymmetric, limits, data came from systematics (More on Friday)

- No ENSDF editor available yet for all platforms
 - See talks next Tuesday by
 - -- Elisabeth McCutchan on EVP (Windows)
 - -- Viktor Zerkin on web based ENSDF editor

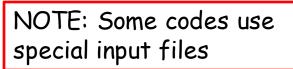
I what familie	174TM	174ER B- DECAY 1991BE04,1989CH05 99NDS 199908			
l platforms	174TM H	TYP=UPD\$AUT=Tibor Kibedi\$CUT=1-Sep-2015\$			
· • • • • • • • • • • • • • • • • • • •	174TM H	TYP=FUL\$AUT=E. BROWNE, HUO JUNDE\$CIT=NDS 87, 15 (1999)\$CUT=1-Nov-1998			
	174TM c	Activity produced by bombarding natural tungsten target with {+176}Yb			
	174TM <mark>2c</mark>	(E=1.5 GeV) projectiles (1989Ch05) and {+186}W target with {+136}Xe			
	174TM <mark>3c</mark>	(E=1.577 GeV) projectiles (1991Be04). Mass separated {+174}Er.			
	174TM <mark>4c</mark>	Measured b{+-}, g-ray energies and intensities, coincidences, Tm			
indowa		K-x rays (1991Be04,1989Ch05).			
indows)	174TM c	{+174}Er decay scheme is based on 1991Be04. Direct b{+-} population			
		g-ray decay from these levels to {+174}Tm (J p=4-) g.s., which			
DF editor		suggests the existence of a a very low-energy level with $J <2$			
		(1991Be04). But 2006Ch10 exclude this conclusion.			
		Measured E b ~1.3 MeV (1989Ch05).			
		E,RI\$From 1991Be04.			
		M\$From adopted gammas			
		T\$From adopted levels. Other: 3.3 M 2 (1989Ch05), 3.1 M 3 (1991Be04)			
174TM CL J\$ From adopted levels					
	174TM DG CC\$FROM BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals"				
		MR\$IF NO VALUE GIVEN IT WAS ASSUMED MR=1.00 FOR E2/M1,			
		MR=1.00 FOR E3/M2 AND MR=0.10 FOR THE OTHER MULTIPOLARITIES			
		0.0 0+ 3.2 M 2 1.92E3 30			
		NR\$Assuming no b{+-} population to levels at 58.5 keV and below, and			
		using I g(71.7 g + 100.4 g + 130.4 g + 708.6 g + 714.4 + 766.5 g			
	174TM <mark>3CN</mark> 174TM PN	+ 773.4 g)=100%.			
		0.0 4- 5.4 M 1 58.53 17 (2-)			
Redit (Windows)		58.5 2 45 LT (E2) 25.6 6			
Real (Willaows)	174TMS G	LC=19.6 5\$MC=4.81 11			
Company Ligin (DNIDT)	174TMS G	NC=1.091 24\$0C=0.124 3\$PC=0.0001396 22			
Sergey Lisin(PNPI)		\$Observed only in a coincidence experiment (1989Ch05). Not observed			
		by 1991Be04 (I q <45, estimated from K x ray intensities).			
		100.40 20 3-			
		100.4 2 100 M1 3.07			
	174TMS G	RC=2.57 4\$LC=0.389 6\$MC=0.0867 14			
	174TMS G				
	174TM cG	\$EKC=1.7 {I3} (1991Be04) suggests M1+E2 with MR=1.1 {I+7-4}, which			
		disagrees with 2005Ch67 and 2006Ch10			
		Sother: Elg=100.4 (T2), Tlg=100 (T1) (1989ch05)			


ENSDF codes - typical workflow

ENSDF code

Calculation of level energies, level feeding, conversion coefficients, normalization factors,...

Format and physics checking



Most codes running from terminal/command Interactive : fmtchk<cr> Command line: fmtchk [ENSDF-file]<cr>

	~/TiborPC/ENSDF/A174/174Er — -bash			
MacBook-Pro-2:174Er tibor\$ fm	tchk			
FMTCHK version 10.4b [30-Jum	-2013]			
INPUT file (DEF: fmtchk.inp) OUTPUT file (DEF: fmtchk.rpt				
Errors only or full report (Check continuation cards (Y, Report only fatal errors (N, Suppress warning messages (N Suppress XREF/DSID check (N,	N): Y): , Y):			
174ER ADOPTED LEVELS, GAM 2 error(s) reported 4 warning(s) reported	MAS	99NDS	199908	
174ER 9BE(208PB,XG) 1 warning(s) reported	2005CA02		200502	
174ER 176YB(136XE,XG) 2 warning(s) reported	2006DR04,2009DR06		200907	

Calculation report file

Program BrIcc v2.3 (28-Oct-2011)
Theoretical Dirac-Fock conversion coefficients based on the "Frozen Orbital" Approximation
ICC data file: C:\Program Files\BrIcc/BrIccFOV22.icc
ICC index file: C:\Program Files\BrIcc/BrIccF0V22.idx
Average difference between experimental and theoretical ICC: -1.01(21)%
Average difference between interpolated and theoretical ICC: +0.0(3)%
Adopted theoretical uncertainty: 1.4% of the ICC
Minimum CC value to put on G-record: 1.00E-04
Assumed MR value for E2/M1: MR= 1.00
for M3/E2, E4/M3, M5/E4, M2/E1, M4/E3, E5/M4: MR= 0.10
for E3/M2: MR= 1.00
Input ENSDF file: b-ec-decay 20040914.ens
Processed on: 10:53:44 28-Oct-2011
Operating system: MacOS
operating system nacos
1 : 7LI 7BE EC DECAY 2002TI10 02NP 2003
58 : 7LI G 477.6035 20 10.44 4 M1(+E2) 0.20 20 7.3E-7 11
59 : 7LI cG E from evaluation of 2000He14.
60 : 7LI cG MR from measured a value (1964Kr04)
61: 7LI cG CC measured value (1964Kr04). Theoretical value interpolated
62 : 7LI2cG from tables of 1976Ba63 are 7.73x10{+-7} for M1 and 2.96x10{+-6}
62 J 71 T2cC for E2

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Running ENSDF codes on the web

Running ENSDF Codes on Web by V.Zerkin, IAEA-NDS, 2011-2016 (ver.2016-06-28)

- ENSDF file uploaded to IAEA server
- □ No local program installation is required
- □ See Viktor Zerkin`s talk on next Tuesday

.Nuclide: 205TL See: your file: 205Tl.ens-00, working file: 205Tl.ens. ENSDF: text, ensdf+, ensdf± End of work: remove files and close this project → clean ∃ Run utilities	±, edit		
Programs, parameters, run, results Timeout: 600 sec	Your Files [refresh] Sort by: [na [length] [time]	ame] [exte	en
Checking and utility codes (1) I FMTCHK Checking ENSDF format /10.3e+, 15-Dec-2015/ (2) C chk_ENSDF Total ENSDF checker /x-0.4.7, 10-Apr-2014/ PNPI checking codes (see [page]) (3) C chk_DARENT Checking PARENT-records in DECAY datasets /24-Jan-2009/ (4) C chk_brackets Pair brackets checker from ENSDF-format files /20-Apr-2012/ (5) S PREPRO 'some' preprocessing /2014/ (6) XPQCHK checks consistency of quantities given on p-card /2014/ Analysis codes (7) ALPHAD Alpha Hinderance Factor Program (AHF, AHFYE, ALPHAD) /x-2.0a, 06-Nov- 2006/ (8) B Bricc calculates conversion coefficients and E0 electronic factors /x2.3b, 16-Dec-2014/ (9) B BriccC Mixing calculates Mixing Ratio (MR) and Normalization Factor (R) /x2.3b, 16- Dec-2014/ (10) G GABS Gamma-ray absolute intensity and normalization calculation /x-11.0, 02-Apr- 2015/ (11) GTOL Determines level energies from a least-squares fit to Ey's & feedings /x-7.2h, 24May=2013/ (12) E LOGFT Calculates log ft for beta decay /x-7.2, 7-Feb-2001/ (13) P ANDORA Checks physics of ENSDF files /x-7.0b, 01-May-2007/ (14) C RADLST calculates the nuclear and atomic radiations associated with the	<pre>X 205Tl.ens-00 X 205Tl.ens.radist.ENSDF.RPT X 205Tl.ens.radist.err X 205Tl.ens.radist.inp X 205Tl.ens.radist.RADLST.INP X 205Tl.ens.radist.RADLST.RPT X 205Tl.ens.radist.tt Total files: 8, length: 289953 bytes</pre>		
Tradioactive decay A-5, 05-Oct-1988/ The program RADLST (Radiation Listing) is designed to calculate the nuclear and atomic radiations associated with the radioactive decay of nucley. It uses as its primary input nuclear decay data in the ENSDF format. By TWBurrows Brookhaven Nelional Laboratory. See [manual] Output Radiation Listing Output RADF-like File Output RIP-like File Output File ISOF Nudat Output Mird Listing Calculate Continua			

Platforms, programming languages & compilers

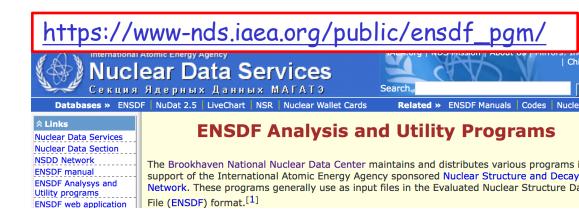
- □ Supported platforms: Windows, Linux and MacOS
- Programming languages: FORTRAN 77, FORTRAN 95, Java, Python
 FORTRAN compilers
 - > GFORTRAN: freely available at https://gcc.gnu.org/wiki/GFortran
 - Windows users download the "MinGW native windows" binary packages using the MinGW installation manager; add "C:\MinGW\bin" to the path
 - Linux and MacOS users follow the instructions on the <u>https://gcc.gnu.org/wiki/GFortranBinaries</u>
 - Intel FORTRAN: not free; USD ~400 (academic) at <u>https://software.intel.com/en-us/fortran-compilers</u>
 - Free student licenses at:

https://software.intel.com/en-us/qualify-for-free-software/student

- Windows: integrated with MS Visual Studio
- Linux & MacOS: use makefiles

Optional exercise: compile FMTCHK using GFORTRAN

Obtaining ENSDF codes


Source codes

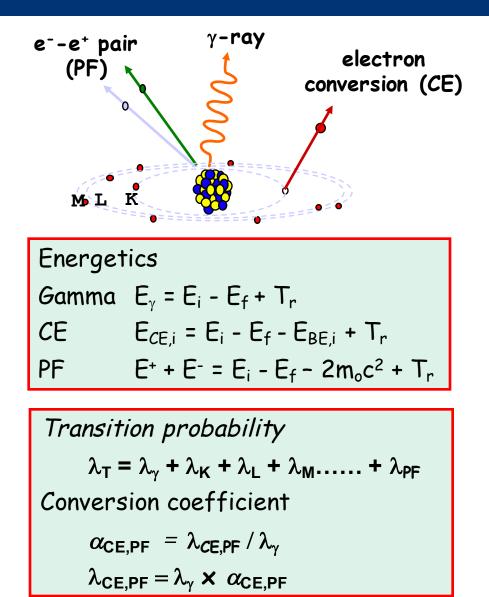
Looking the source code could be helpful to resolve problems!

Error messages not always sufficiently clear

http://ww	w.nndc.bnl.gov/nndcscr/	<u>ensdf_pgm/</u>
	r Data Center	BROOKHAVE NATIONAL LABORATI
NNDC	Databases: ENDF CSISRS CINDA NuDat NSR XUNDL ENSDF MIRD	×
Search the NNDC:	ENSDF Analysis and Utility Progra	ms
NNDC Site Index	The National Nuclear Data Center maintains and distributes	Documentation
Documentation	various programs in support of the International Atomic Energy Agency sponsored Nuclear Structure and Decay Data Network.	Status of the ENSDF Analysis
Status	These programs generally use as input files in the Evaluated	and Utility Programs
Sample input	Nuclear Structure Data File (ENSDF) format. ^[1]	▶ Sample input
Distribution Notes		
ENSDF Analysis and Utility Programs	ENSDF Analysis Programs	ENSDF Program Library Distribution Notes
ENSDF Analysis Programs	 NSDFLIB - Subprogram library used by many of the ENSDF Analysis & Utility Programs 	
NSDFLIB	 SETMDC - Converts programs containing machine 	
SETMDC Þ	dependent coding	
ENSDF Utility Programs >	ENSDF Utility Programs	

- Executables for Windows/Linux/MacOS
- ReadMe files / pdf manuals
- Sample input & output files

ÁVEN



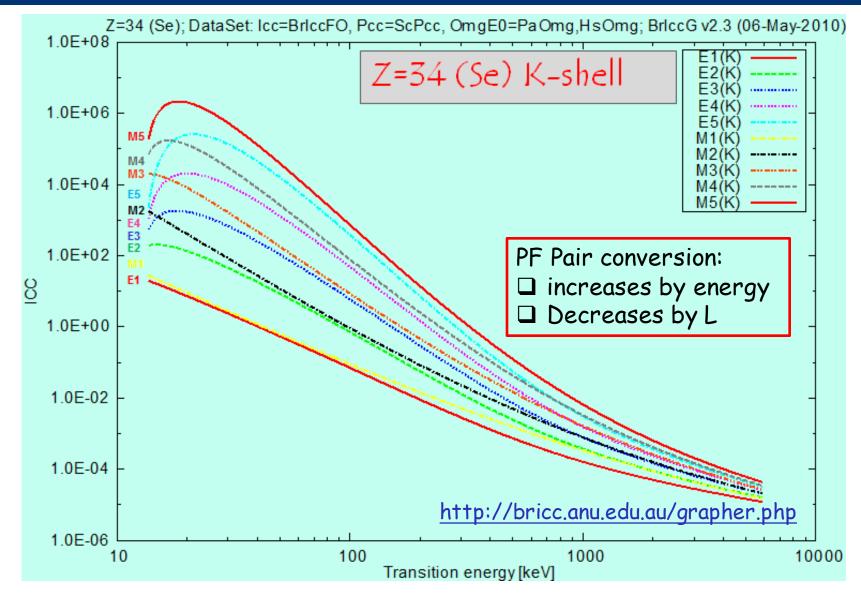
ENSDF Analysis codes - ALPHAD

For alpha decay calculates the theoretical $T_{1/2}(\alpha)$'s and R_o 's to deduce the hindrance factor.

- Hindrance factor: T_{1/2}(exp)/T_{1/2}(calc); typically between 1 and 3E4
- Theoretical α -decay half life derived from a simple model. Alpha particle contained inside the nucleus by a potential barrier at r=R₀
- R_o can be specified in the ENSDF input file; use the **radD** code to calculate R_o for odd-odd and odd-mass nuclei
- Language: FORTRAN77, updated to FORTRAN90
- Documentation: readme-alphad.pdf
- Input ENSDF file: alphad.inp
- Calculation report: alphad.rpt
- Output ENSDF file: alphad.new
- alphad_new: combines alphad and radD; need to be tested

Electromagnetic Decay Processes

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

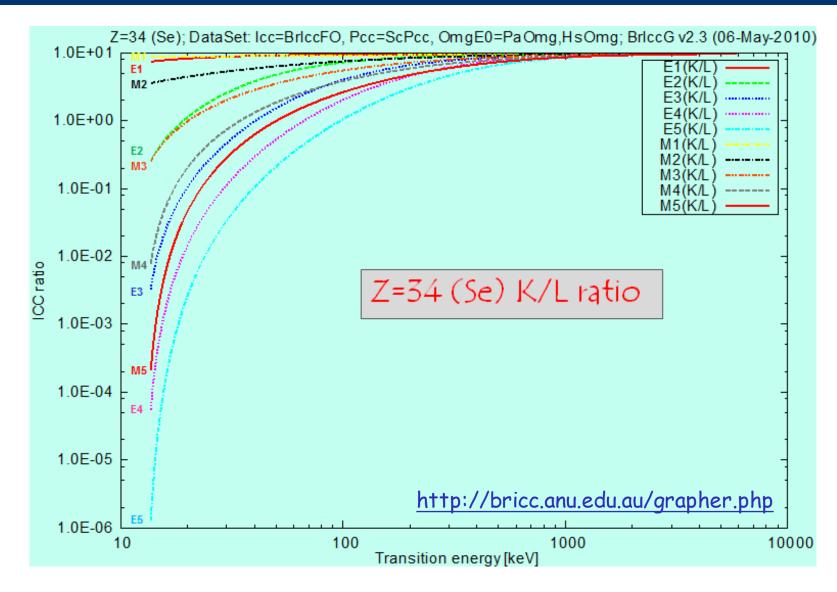

EM decay: energy and momentum carried away

Selection *rules* (πL) |L-j_i| $\leq j_f \leq L+j_i$ $\pi = (-1)^L$ for EL $\pi = (-1)^{L+1}$ for ML

E0 transitions: $j_i=j_f$ No single photon emission is allowed! Conversion coefficient is not defined $\lambda_{CE,PF} = \rho^2(E0) \times \Omega_{CE,PF}$

ICTP-IAEA ENSDF workshop, Trieste, August 2016

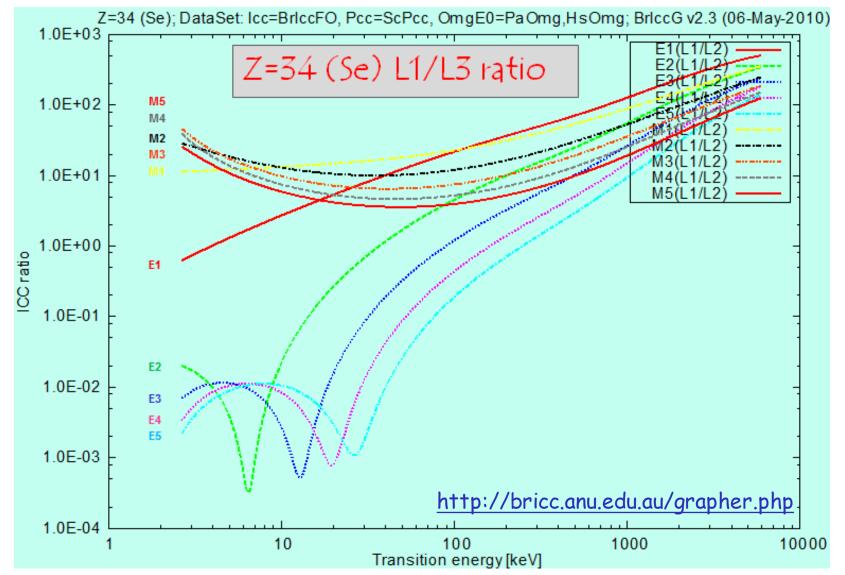
THE AUSTRALIAN NATIONAL UNIVERSITY ICC - energy & multipol dependence



Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

ICTP-IAEA ENSDF workshop, Trieste, August 2016

ICC - shell dependence



Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

ICTP-IAEA ENSDF workshop, Trieste, August 2016

ICC - shell dependence

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

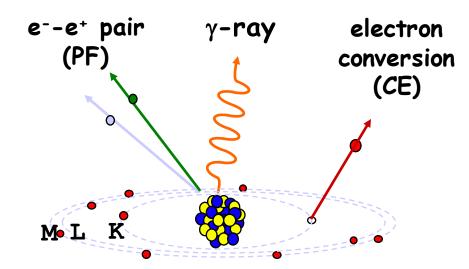
ICTP-IAEA ENSDF workshop, Trieste, August 2016

Mixed Transitions

	$\Delta \pi = +1$		Δπ=	-1
πL	M1	M3	E1	E3
π'L'	E2	E4	M2	M4

Mixing ratio (MR)

$$\delta^{2}(\pi'L'/\pi L) = \frac{\lambda_{\gamma}(\pi'L')}{\lambda_{\gamma}(\pi L)}$$


Conversion coefficient for CE and PF

$$\alpha(\pi'L'/\pi L) = \frac{\alpha(\pi L) + \delta^2 \alpha(\pi'L')}{1 + \delta^2}$$

Special cases of mixed transitions with 3 multipolarities

- 184W 536.674(15) keV E1+M2+E3, ME(M2/E1)=+0.070(6), MR(E3/M2)=-0.025(4), λ=-2.1(2); very few known cases; none of the codes can handle two MR
- □ M1+E2+E0: more common, not discussed here

ANU Theoretical conversion coefficients

Energetics of CE-decay E_i - E_f = E_{CE,i} + E_{BE,i} + T_r

Transition probability $\lambda_{T} = \lambda_{\gamma} + \lambda_{K} + \lambda_{L} + \lambda_{M} + \lambda_{PF}$ Conversion coefficient $\alpha_{CE,PF} = \lambda_{CE,PF} / \lambda_{\gamma}$ $\lambda_{CE,PF} = \lambda_{\gamma} \times \alpha_{CE,PF}$ α_{CE}: 2002Ba85 Band et al. 2008Ki07 Kibedi et al. 2012Ki04 Kibedi et al.

- α_{PF}: 1979Sc31 Schluter et al. 1996Ho21 Hofman et al.
- Ω_{CE}: 1969Ha61 Hager-Seltzer 1970Be87 Bell et al. 1986PaZM Passoja et al. Use BrIcc to obtain values by interpolation

EO transitions:

j_i=j_f

No single photon emission is allowed! Conversion coefficient is not defined

 $\lambda_{\text{CE,PF}} = \rho(E0) \times \Omega_{\text{CE,PF}}$

ENSDF Analysis - BrIcc

Calculates Band-Raman Internal Coefficients for gamma-rays based on atomic number, gamma-ray energy, multipolarity, mixing ratio and atomic shell

- Language: FORTRAN90
- Documentation: BrIcc.pdf
- Data files: BrIccFO.idx, BrIccFO.icc, BrIccNH.idx, BrIccNH.icc
- Installation: Compressed archive (Linux&MacOS); installer package (Windows)
- "BrIccHome" environment variable to find data files
- HsIcc (Hager and Seltzer Internal ICC) used for older (pre ~2009) datasets
- <u>Step_1</u>: generates new cards
- Input ENSDF file: myFile.ens
- Calculation report: BrIcc.lst
- New ENSDF records: Card.new
- Old/new card comparison report: Compar.lst
- <u>Step_2</u>: merge (delete/replace/insert) new cards to ENSDF file
- Output ENSDF file: cards.new

More on today afternoon practice session

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

ENSDF Analysis - BrIccMixing

BrIccMixing — Calculates multipole mixing ratios from internal conversion coefficients, ratios of internal conversion coefficients and multipol mixing ratios

- Language: FORTRAN90; uses GnuPlot for plotting
- Documentation: BrIccMixing.pdf; sign convention: 1970Kr14
- Data files: BrIcc & Gnuplot (<u>http://www.gnuplot.info</u>) need to be installed
- Installation: Compressed archive (Linux&MacOS); installer package (Windows)
- Input ASCII file: myFile.in
- Calculation report: BrIccMixing.lst
- GnuPlot script and data file for each data set

More on today afternoon practice session

Conversion coefficient for CE and PF $\alpha(\pi'L'/\pi L) = \frac{\alpha(\pi L) + \delta^2 \alpha(\pi'L')}{1 + \delta^2}$

ENSDF Analysis - DELTA

Analyses angular correlation and conversion coefficient data, and calculates the best values of mixing ratios Language: FORTRAN77

- Documentation: readdelt.me
- Installation: executable
- Input ASCII file: delta.dat
- Calculation report: delta.rpt
- Replaced by BrIccMixing

ENSDF Analysis - GABS

Calculates absolute gamma-transition intensities and decay scheme normalization factors NR for converting relative decay intensities to absolute intensities per 100 decays

Language: FORTRAN77 updated using FORTRAN90

Documentation: Gabs-Manual.pdf;

1986Br21 E. Browne, Calculated Uncertainties of Absolute gamma-ray Intensities and Decay Branching Ratios Derived from Decay Schemes, Nucl. Instr. Meth. A249 (1986) 462

- Installation: executable
- Input ENSDF file: myEnsdf.in (a minimum of one transition going to g.s. need to be marked)
- Calculation report: myEnsdf.rpt
- Output ENSDF file: myENSDF.new

More on today afternoon practice session

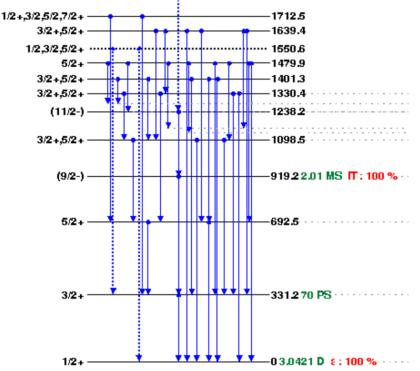
ENSDF Analysis - JGAMUT

Tool to create ADOPTED dataset by combining gamma-ray energies and intensities from different input data sets. Two ways of taking input gamma-ray energy and intensity measurements and producing adopted values.

Language: java

- Documentation: jgamutManual.pdf
- Installation: executable
- Input ENSDF file: myEnsdf.in (a minimum of one transition going to g.s. need to be marked)
- Calculation report: myEnsdf.rpt
- Output ENSDF file: myENSDF.new

More on today afternoon practice session (ask Balraj)


ENSDF Analysis - GTOL

Tool to perform a least-squares fit to the gamma-energies to obtain level energies and to calculate the net feedings to levels.

Language: FORTRAN77 converted to FORTRAN90

- Documentation: readme-gtol-2.pdf
- Installation: executable
- Input ENSDF file: gtol.inp (special commands to control execution)
- Calculation report: gtol.rpt
- Output ENSDF file: gtol.out

More on today afternoon practice session

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

ICTP-IAEA ENSDF workshop, Trieste, August 2016

ENSDF Analysis - LOGFT

Tool to calculate

- logft for beta decay
- partial capture fractions for electron capture decay
- electron capture to positron ratio for positron decay
- Average β-ray energies
 Language: FORTRAN77 converted to FORTRAN90
- Documentation: readmelogft.me
- Installation: executable; radial wave function data: LOGFT.DAT
- Input ENSDF file: data.tst
- Calculation report: logft.rpt
- Output ENSDF file: logft.new

More on today afternoon practice session

ENSDF Analysis - PANDORA

- Tool to carry out physics checking on ENSDF datasets
- <u>Decay data sets</u>, other than IT and SF decays have a P-card and vice versa
- An <u>L-record</u> with T_{1/2} > 0.1 sec should have MS FLAG
- Consistency of <u>spin/parity</u> of levels with <u>multipolarity</u> connecting transitions
- For a <u>transfer reaction</u> with even-even target J=L±1/2
- <u>β-decay</u>: log ft, J_i, J_f, parity change
- α -decay: HF, J_i, J_f parity change
- Levels out of order
- Language: FORTRAN77 converted to FORTRAN90
- Documentation: readmepandora.pdf
- Installation: executable
- Input ENSDF file: pandora.inp
- Several output files: pandora.err, pandora.gam, pandora.gle, pandora.lev, pandora.rad, pandora.rep, pandora.xrf
- Output ENSDF file: pandora.out

More on today afternoon practice session

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

ENSDF Analysis - RADLIST

Calculates the nuclear and atomic radiations associated with the radioactive decay of nuclei:

- β⁺, β⁻, ε decay
- α decay
- γ-rays, conversion electrons, electron-positron pairs
- X-rays and Auger electrons
- Language: FORTRAN77
- Documentation: readme-pandora.pdf; radlistdoc.pdf (description of physics)
- Installation: executable; atomic mass data RADMAS.DAT; atomic data MEDNEW.DAT
- Input ENSDF file: radlist.inp
- Several output files: radlist1.out, radlist2.out, radlist3.out, radlist4.out, radlist5.out

<u>Code is not maintained, replacement (BrIccEmis) under development (Friday)</u> <u>Use myEnsdf at https://www-nds.iaea.org/exfor/myensdf.htm</u>

ENSDF Analysis - RULER

Calculates

- a) reduced electromagnetic transition strengths and compares these to the Recommended Upper Limits (RUL)
- b) BE λ and BM λ
- Language: FORTRAN77
- Documentation: ruler.pdf, readme-ruler.pdf; Ruler-NewFeatures.pdf
- Installation: executable
- Input ENSDF file: ruler.inp
- Output files: (a) ruler1.rpt, (b) ruler2.rpt

More on today afternoon practice session

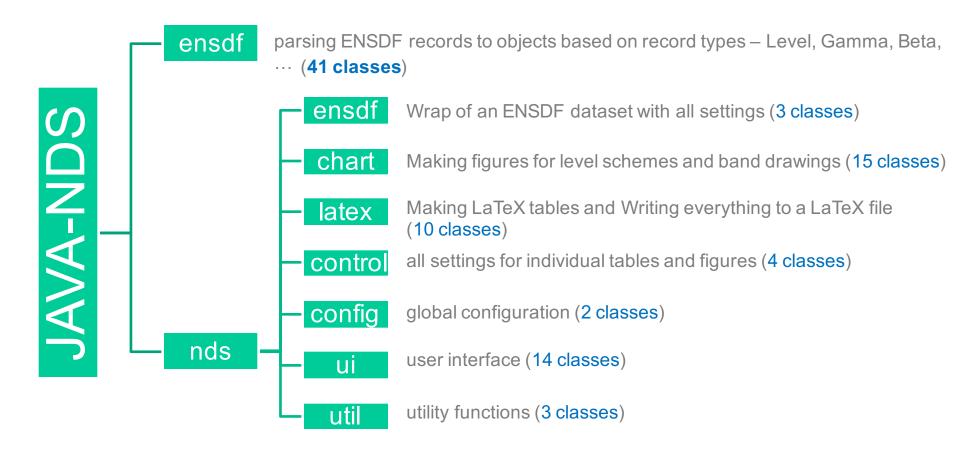
<u>Code is not maintained, replacement</u> <u>under development</u>

Recommeded Upper Limits RUL				
	Γ_{χ}/Γ_{W} (Upper Limit)			
Character*	$A=6-44^{a\$}$	$A = 45 - 150^{b,c}$	<u>A>150^d</u>	
E1 (IV)	$0.3^{\#}$	0.01	0.01	
$E2 (IS)^{e}$	100	300	1000	
E3	100	100	100	
E4	100	100^{\dagger}		
M1 (IV)	10	3	2	
M2 (IV)	3	1	1	
M3 (IV)	10	10	10	
M4		30	10	

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

ICTP-IAEA ENSDF workshop, Trieste, August 2016

ENSDF Utility codes - ADDGAM


Adds gamma transitions to the <u>adopted</u> dataset when all gamma's come from one data set

- Language: FORTRAN 77
- Documentation: readaddg.me
- Installation: executable
- Input1: ADOPTED data set; sample: ADDGAML.DAT
- Input2: A decay/reaction data set with gammas to be added; Sample: ADDGAMG.DAT
- Output: Merged dataset; sample: ADDGAM.NEW
- The relative intensities (RI) will be scaled, so the strongest gamma will be 100
- If only one gamma coming from the level, no uncertainty in RI given; DRI=0
- If gammas come from more than one data set but are non-overlapping, the program may be run successively with different gamma data sets as input; care should be taken to merge intensities correctly!
- Use jGAMUT

- Calculates the average value and uncertainty of a set of experimental data using 5 different statistical methods
- Language: FORTRAN90
- Documentation: AveTools.pdf
- Installation: Compressed archive (Linux&MacOS); installer package (Windows)
- Input ASCII file: AveTools.in
- Output: Avetools.rpt
- <u>V.AveLib</u> alternative code in java; next talk by Balraj Singh`s on Averaging <u>methods</u>

Courtesy of Jun Chen, NSCL/MSU

JAVA-NDS Nuclea				
Nuclear Dat				
J. CHEN	[#] AND F.G. KONDEV			
Nu Ar Ai				
[#] Present address: Na	Nuclear Data Sheets for	$A = 209^*$		
East 1	NDS-PUB			
(Received 24 Se	J. CHEN [#] AND F.G. KOND	EV		
Abstract: The experimental data are evaluated for Detailed evaluated level properties and related for level energies, half-lives, γ -ray energies and other spectroscopic data. This work supersedes	Argonne National Laboratory 9700 South Cass Avenue			
Cutoff Date: Literature available in NSR database	Michigan State University	ratory		
General Policies and Organization of Material: /nds/NDSPolicies.pdf.	East Lansing, Michigan 48824, USA (Received September 24, 2013; Revised March 31, 2015))		
Acknowledgements: The authors express their gravity Nuclear Data Center for their assistance during thankful to the reviewer, Dr. M.J. Martin, for hi The authors are also grateful to Dr. Gopal Muk	g Fr, Ra, Ac, Th). Detailed evaluated level properties and related nuclear structure information are presented, with the best values recommended for level energies, half-lives, γ -ray energies and intensities, decay data (energies intensities and placement of radiations) and other spectroscopic data. This work supersedes the			
	Cutoff Date: Literature available in NSR database up to September 30, 2013 has been included. General Policies and Organization of Material: see http://www.nndc.bnl.gov/nds/NDSPolicies.pdf.			
NDS-PUB Font(6pt): NewCenturySchlbł	Acknowledgments: The authors express their gratitude to Dr. J.K. Tuli, Mrs. J. Tot the National Nuclear Data Center for their assistance during the evaluation pro- manuscript. The authors are thankfill to the manuscript and many useful comments Kolkata for his help with the evaluation	cess and the preparation of the		

ENSDF Utility codes - XLS2ENS

- Code to generate ENSDF file from data stored in Excel
- Language: Python 2.7.6 ONLY!
- Installation: compressed archive of Python script, documentation and sample input; requires xlrd Python module

- □ Codes are for you to do your work, but you need to understand how they work and how to drive. Knowledge in programming is useful, but not essential
- ENSDF codes written by evaluators and tested by evaluators. Give feedback if you notice problems, unexpected behaviors
- □ Always run FMTCHK to verify that the input ENSDF file has no errors
- □ Observe the messages on the terminal console and in the report files
- Error messages may not be sufficient to solve problems. Look into the source code if available
- □ Some codes create new ENSDF files under different name. Check the new ones before overwriting the old ones
- IAEA action to replace old codes with new ones: jGamut, java_NDS, v.AveLib are already out