Nuclear Experiments with Radioactive Isotope Beams I

Hiroyoshi Sakurai RIKEN Nishina Center / Univ. of Tokyo

RI Beam Factory

Radioactive isotope productions and particle identification

In-beam gamma spectroscopy Decay spectroscopy

Mass spectroscopy

Invariant mass spectroscopy Missing mass spectroscopy Others

Major RI Beam Facilities in the world Finland Our "Frenemy" (friend+enemy) JYFL China Japan <u>Germany</u> Russia IMP **RIKEN-RIBF** GSI **JINR** CIAE Canada France TRIUMF **GANIL** SPIRAL-I, II <u>USA</u> LISE **MSU/NSCL** ANL Texas A&M Switzerland CERN/ISOLDE Italy Red colored: In-flight method India MAR LNS Next generation facility VECC FAIR at GSI 2021-IUAC FRIB at MSU 2020-

In-flight and ISOL methods to produce radioactive ions

Large-scaled Facilities in the world

H.S. at PKU Summer School 2011

New experimental techniques to have very slow RI beams RIKEN, NSCL/MSU, ANL

FRIB : post-acceleration for radioactive isotopes after ISOL

Large-scaled facilities in operation and proposed in East Asia

HIRFL (IMP) In-flight + Ring

RISP (RAON) Project ISOL+In-Flight+ISOL

BRIF project (CIAE) ISOLHIAF project(IMP)In-flight funded in 2015ADS project (CAS)funded in 2015

History of In-flight Method

<u>Oth Generation (70's) LBL</u> "Discourry" of Projectile From

"Discovery" of Projectile Fragmentation

 $\frac{1^{st} Generation (80's) GANIL/LISE}{Establishment of Separation Technique Bp-\Delta E-Bp Method}$

2nd Generation (90's) GSI/FRS, NSCL/A1200-1900, GANIL/SISSI, RIKEN/RIPSHigh-Collection TechniqueMax. Bρ and Large AcceptancesRIKEN/RIPSEmittance-transformationGANIL/SISSIFurther Purification MethodsExB filterrf-deflectorRIKEN/RIPSIn-flight Fission for neutron-rich nucleiGSI/FRSCombination of Separator + SpectrometerGANIL, NSCL, GSI

<u>**3rd Generation (00's -) RIKEN/RIBF, GSI/FAIR, MSU/FRIB</u></u> High-Power Heavy-Ion Beams up to U**</u>

The First RI Beam Experiment (1974)

RI Beam Factory

World's First and Strongest K2600MeV Superconducting Ring Cyclotron

400 MeV/u Light-ion beam 345 MeV/u Uranium beam

World's Largest Acceptance 9 Tm Superconducting RI beam Separator

~250-300 MeV/nucleon RIB

Energy Dependence of RI Yields

Cyclotron provides more intense beams than synchrotron.

PID to determine Z and A

Standard Technique

+E $A\beta^2$

We have to stop beams? No reaction studies??

BigRIPS was designed

to have nice resolving power to determine A/Q without E measurement.

Delivery of tagged RI-beam

Identify RI-beam species Z, A/Q by measuring ΔE , B ρ , TOFin an event-by-event mode using beam-line detectors on the2nd stage.Aim at tagging rate up to 1 x 10⁶ pps.

StandardNew Scheme $B\rho$ -TOF-dE-E \longrightarrow Z, A, QZ, A/Q

Basic parameters of BigRIPS T. Kubo et al.

Configuration	Two-stage separator	
First stage	Two bends	
Second stage	Four bends	
Energy degrader	Achromatic wedge	
Quadrupoles	Superconducting	
Angular acceptance		In-flight fission of
Horizontal	80 mr	238 U at 350 MeV/u
Vertical	100 mr	~ 100 mr
Momentum acceptance	6 %	~ 10 %
Max. magnetic rigidity	9 Tm	
Total length	77 m	
Momentum dispersion*		
First stage	-2.31 m	
Second stage	3.3 m	
Momentum resolution**(1st order)		
First stage	1290	
Second stage***	3300	

At the mid-focus of the stage. *

** Those in the case when a 1 mm beam spot is assumed.

F5: Momentum dispersive focal plane

Identification of new isotopes ^{125,126}Pd

T. Onishi et al, JPSJ 77 (08)083201.

Cf. ¹²⁴Pd 19 counts, ¹²⁵Pd(cand.) 1count at GSI, 1997 PLB 415, 111 (97); total dose ~1x10¹²

Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a ²³⁸U Beam at 345 MeV/nucleon

T. Ohnishi, et al., JPSJ 79, 073201 (2010).
Nov., 2008
Averaged beam intensity ~0.2 pnA

Maximum intensity 0.4 pnA

Even Z

Odd Z

150

Mn (Z=25) to Ba (Z=56) Covered by three Brho settings Be and Pb targets Total dose 1-2x10¹⁴ for each Brho setting

Yield rates reasonably reproduced by LISE++

RI Beam Production at BigRIPS Since 2007

