Particle Spectroscopy

Michael Thoennessen FRIB/NSCL Michigan State University

Great Tool: LISE++

LISE++ [Noname]					j
File Settings Options Calculations Utilities 1D-Plot 2D-Plot D	atabases Help	la sela sela mila minudi su di cont			
Projectile ⁴⁰ Ar ¹⁸⁺ 140 MeV/u 1 pnA Fragment ³² S ¹⁶⁺			40Sc 41Sc	⁴² Sc ⁴³ Sc ⁴⁴ Sc	⁴⁵ Sc ^
To Target Be 500 m kech			³⁹ Ca ⁴⁰ Ca	⁴¹ Ca ⁴² Ca ⁴³ Ca	44Cz
		L'HALL	3817 3917	401/2 411/2 421/2	4317
D1 2.4601 1m	77 HI	-111			
S I2_oits Sits	statistics: 35P				
-25.5 N +25.5					
D3 Brho	35P Be	ta- decay (Z=15, N	i=20)	Phosphorus	Print
D4 2.4601 11m					LISE++ database
M FP_PPACO AI 2 mgxcm2	AME2012 index	15020	error		Decav analysis
M FP_PPAC1 AI 2 mojcm2	Mass excess. [MeV]	-24.8578	0.0019		
S FP_sits 818	Binding energy	295.6170	0.0019		Z-wallet NNDC
config: A1900_2013	Beta- decay	3.9884	0.0019		A.Z NNDC =
version: 9.6.3 1% 22 Si 23 Si	Beta+ decay	-10.4974	0.0384		
	S(2n)	14.6631	0.0022		A,Z JAEA-10
22A	S(2p)	30.9675	0.0756		
	Q(alpha)	-12.3277	0.0204		A, Z TON [SE]
FRIB 19Mg 20Mg 21M	S(n)	8.3804	0.0020		Chemistry - P
Projectile Fragmentation	S(p)	12.1900	0.0142		
Proyected Fragmentation	T 1/2	47.3 sec	0.8		File Save
	O-reaction (b+t -> f	1+f2) -1.70 MeV	(error=0.00)	19 MeV)	Discovery
	Ĩ	·	·		
	<				•

O. Tarasov, http://lise.nscl.msu.edu

Discovery of Isotopes

Discovery of Nuclides Project

https://people.nscl.msu.edu/~thoennes/isotopes/

Papers on discovery

Atomic Data and Nuclear Data Tables 95 (2009) 805-814

Discovery of the ceriu	m isotopes	Discovery of Nuclides - Window	vs Internet Explorer		<u>_ ×</u>
J.Q. Ginepro, J. Snyder, M. Th	hoennessen*	🔆 🔄 マ 🕲 http://ww ♀ 🔽	🖸 🔄 🏏 🖉 Discovery o	of Nuclides X	☆☆ 🕸
National Superconducting Cyclotron Laboratory	and Department of Physics a	File Edit View Favorites To	ools Help		
		Z = 0 - 10	M. Thoennessen	At. Data Nucl. Data Tables 98, 43 (2012)	_
ARTICLE INFO	ABSTRAC	Z = 11 - 19	M. Thoennessen	At. Data Nucl. Data Tables 98, 933 (2012)	
Article history:	The discovery of t	Z = 20 Calcium	J. Gross	At. Data Nucl. Data Tables 97, 383 (2011)	
Available online 18 July 2009 topes are suggest the production an	topes are suggest the production an	Z = 21 Scandium	D. Meierfrankenfeld	At. Data Nucl. Data Tables 97, 134 (2011)	
		Z = 22 Titanium	D. Meierfrankenfeld	At. Data Nucl. Data Tables 97, 134 (2011)	
		Z = 23 Vanadium	A. Shore	At. Data Nucl. Data Tables 96, 351 (2010)	
		Z = 24 Chromium	R. Robinson	At. Data Nucl. Data Tables 98, 356 (2012)	
		Z = 25 Manganese	K. Garofali	At. Data Nucl. Data Tables 98, 356 (2012)	
		Z = 26 Iron	A. Schuh	At. Data Nucl. Data Tables 96, 817 (2010)	
		Z = 27 Cobalt	T. Szymanski	At. Data Nucl. Data Tables 96, 848 (2010)	
		Z = 28 Nickel	R. Robinson	At. Data Nucl. Data Tables 98, 356 (2012)	
		Z = 29 Copper	K. Garofali	At. Data Nucl. Data Tables 98, 356 (2012)	
		Z = 30 Zinc	J. Gross	At. Data Nucl. Data Tables 98, 75 (2012)	
		Z = 31 Gallium	J. Gross	At. Data Nucl. Data Tables 98, 983 (2012)	
		Z = 32 Germanium	J. Gross	At. Data Nucl. Data Tables 98, 983 (2012)	

https://people.nscl.msu.edu/~thoennes/isotopes/

Missing Mass Spectra

J. Cerny et al., Phys. Rev. Lett. 13 (1964) 726

Application to "exotic nuclei"?

"Nuclei with ratios of neutron number N to proton number Z much larger or much smaller than those of nuclei found in nature."

McGraw-Hill Concise Encyclopedia of Physics. (2002). Retrieved August 5 2015 from http://encyclopedia2.thefreedictionary.com/Exotic+nuclei

Terminology:

- Exotic nuclei?
- > Rare isotopes?
- Radioactive nuclei?
- > Nuclei/Nuclides/Isotopes

Nucleus - Nuclide - Isotope

- Nucleus: The nucleus is the small, dense region consisting of protons and neutrons at the center of an atom.
- Nuclide: A nuclide is an atomic species characterized by the specific constitution of its nucleus, i.e., by its number of protons Z, its number of neutrons N, and its nuclear energy state.
- Isotopes: Different nuclides having the same atomic number are called isotopes.

A species of atoms identical as regards atomic number (proton number) and mass number (nucleon number) should be indicated by the word 'nuclide', not by the word 'isotope'.

https://en.wikipedia.org/wiki/Nuclide E.R. Cohen and P. Giacomo, Document I.U.P.A.P.-25 (SUNAMCO 87-1)

Different types of nuclides?

- Stable: Nuclides which do not decay (What about ¹²⁸Te: $T_{1/2} = 2.2 \cdot 10^{24}$ years)
- Radioactive: Nuclides which decay with a half-life longer than about 10⁻¹²s (⁸Be is unstable: $T_{1/2} = 82 \text{ as } (8.2 \cdot 10^{-17} \text{ s})$
- **Bound:** With respect to neutron or proton emission

Decay of proton-rich nuclei

Unbound nuclides can still be radioactive:

¹²¹Pr: $T_{1/2}$ = 12 ms (proton emitter)

Unbound nuclides do not have to decay by proton emission:

¹³⁵Tb: $T_{1/2}$ = 1 ms S_p = -1.19 MeV - β^+ emitter

First new isotope produced with an accelerator

Disintegration of Lithium by Swift Protons

In a previous letter to this journal ¹ we have described a method of producing a steady stream of swift protons of energies up to 600 kilovolts by the application of high potentials, and have described experiments to measure the range of travel of these protons outside the tube.

⁷Li + p \longrightarrow ⁸Be \longrightarrow 2 α

The brightness of the scintillations and the density of the tracks observed in the expansion chamber suggest that the particles are normal α -particles. If this point of view turns out to be correct, it seems not unlikely that the lithium isotope of mass 7 occasionally captures a proton and the resulting nucleus of mass 8 breaks into two α -particles, each of mass four and each with an energy of about eight million electron volts.

J.D. Cockcroft and E.T.S. Walton, Nature 129 (1932) 649

Beta-delayed protons OBSERVATION OF DELAYED PROTON RADIOACTIVITY R. BARTON,* R. MCPHERSON, R. E. BELL, W. R. FRISKEN, W. T. LINK, AND R. B. MOORE Radiation Laboratory, McGill University, Montreal

R. Barton et al., Can. J. Phys. 31 (1963) 2007

- (3/2,5/2+)

Fusion evaporation reactions

M. Thoennessen, Rep. Prog. Phys. 67 (2004) 1187

Ground-state proton radioactivity

Proton Radioactivity of ¹⁵¹Lu

S. Hofmann, W. Reisdorf, G. Münzenberg, F.P. Heßberger, J.R.H. Schneider, and P. Armbruster Gesellschaft für Schwerionenforschung mbH, Darmstadt, Federal Republic of Germany

S. Hofmann et al., Z. Phys. A 305 (1982) 111

Two-proton radioactivity

First evidence for the two-proton decay of ⁴⁵Fe M. Pfützner^{1,a}, E. Badura², C. Bingham³, B. Blank⁴, M. Chartier⁵, H. Geissel², J. Giovinazzo⁴, L.V. Grigorenko⁷ R. Grzywacz¹, M. Hellström², Z. Janas⁴, J. Kurcewicz¹, A.S. Lalleman⁴, C. Mazzocchi², I. Mukha⁷, G. Minzzehler C. Plettne², E. Rocek¹, K.P. Rykazzewsk¹¹, K. Schmid¹, R. S. Simol², M. Stanou³, and J.-C. Thomas⁴ 6 events of ⁴⁵Fe Counts/20 ¹ Institute of Experimental Physics, Warsaw University, PL-00-681 Warszawa, Poland ² GSI, Planckstrasse I, D-64291 Darmstadt, Germany ³ Department of Physics and Astronomy, University of Tennessee, Knoxville 37996 TN, USA 1200 1000 CEN Bordeaux-Gradigman, F-S3175 Gradigman Cedex, France Linexine 31999 11V, OSA CEN Bordeaux-Gradigman, F-S31375 Gradigman Cedex, France Liverpool, Liverpool, L69 3BX, UK Oliver Lodge Laboratory, Department of Physics, University of Liverpool, Liverpool, L69 3BX, UK Physics Division, ORNL, Oak Ridge, TN 37831-0371, USA ⁷ Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, UK 01 . . ⁸ GANIL, BP 5027, F-14021 Caen Cedex, France 2000 1000 3000 4000 5000 6000 Received: 17 May 2002 Communicated by J. Äystö Energy [keV] 600 MeV/A ⁵⁸Ni fragmentation PHYSICAL REVIEW LETTERS VOLUME 89, NUMBER 10 2 September 2002 Two-Proton Radioactivity of ⁴⁵Fe

J. Giovinazzo, B. Blank, M. Chartier,* S. Czajkowski, A. Fleury, M. J. Lopez Jimenez,[†] M. S. Pravikoff, and J.-C. Thomas CEN Bordeaux-Gradignan, Le Haut-Vigneau, F-33175 Gradignan Cedex, France

> F. de Oliveira Santos, M. Lewitowicz, V. Maslov,[‡] and M. Stanoiu Grand Accélérateur National d'Ions Lourds, B.P. 5027, F-14076 Caen Cedex, France

> R. Grzywacz§ and M. Pfützner Institute of Experimental Physics, University of Warsaw, PL-00-681 Warsaw, Poland

> > C. Borcea IAP, Bucharest-Magurele, P.O. Box MG6, Romania

B. A. Brown Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, 1321 (Received 21 May 2002; published 19 August 2002)

75 MeV/A ⁵⁸Ni fragmentation

M. Pfuetzner et al., Eur. Phys. J. A 14 (2002) 279 J. Giovinazzo et al., Phys. Rev. Lett. 89 (2002) 102501

Mapping the proton dripline: Z<13

Issue with conference proceedings

Physica Scripta. Vol. T88, 153-156, 2000

Formation and Studies of New Proton Emitters via Intermediate-Energy Fragmentation of Heavy-Element Beams

G. A. Souliotis*

Institute of Nuclear Physics, NCSR Demokritos, Athens, Greece.

NCSR Demokritos, Athens, Greece

Received October 15, 1999

Abstract

The possibility of generating and studying new proton-emitting nuclei using projectile fragmentation of very-heavy beams is investigated in this work. The charge, mass and velocity distributions of heavy residues from the interaction of 30 MeV/nucleon ¹⁹⁷Au projectiles with ⁹⁰Zr have been measured with high-resolution using the MSUA1200 fragment separator. A broad range of proton-rich nuclei are produced in this reaction. A number of new p-rich nuclei (14, of which 6 are expected to be proton emitters) are observed in the region Z = 60 - 73. The opportunity of studying proton rich nuclei produced by this approach is discussed.

MSU A1200 fragment separator

Four-proton radioactivity S (MeV) 6 4 5_{4p} 2 0 4 -2 Energy (MeV) |1p|2p-4 1p $\overset{184}{\text{Au}}^{185}\text{Hg}^{186}\text{Tl}\overset{187}{\text{Pb}}^{188}\text{Bi}\overset{189}{\text{Po}}^{190}\text{At}\overset{191}{\text{Rn}}\text{Rn}^{192}\text{Fr}$ 1p 4p 0 $^{187}\text{Pb}{+}4p \ ^{188}\text{Bi}{+}3p \ ^{189}\text{Po}{+}2p \ ^{190}\text{At}{+}p \ ^{191}\text{Rn}$ S NSCL National Science Foundation Michigan State University M. Thoennessen, Rep. Prog. Phys. 67 (2004) 1187

At and beyond the proton dripline

M. Thoennessen, Rep. Prog. Phys. 67 (2004) 1187

Most neutron-rich nuclides

M. Notani et al., PLB 542 (2002) 49 S.M. Lukyanov et al., JPG 28 (2002) L41

First Observation of ⁴⁰Mg 300 1,024 512 250 256 128 ⁴⁰Mg 200 32 1.24 16 150 100 List 155 ⁰Ma 165 170 175 160 180 ted flight time (ns) ⁴⁰Mg production: 1 in 10^{17 48}Ca beam particles !

T. Baumann *et al.*, Nature **449** (2007) 1022

Dripline Extends Further than Believed Chlorine 37 36 35 32 33 34 Sulfur Phosphorus 31 28 29 30 Silicon Aluminum 45 47 27 24 25 26 Magnesium 23 Sodium 5 22 Neon 4 Bsk9 Fluorine 5/2 З Single-particle energy (MeV) 2 Oxygen 1 P_{1/2} FRDM 0 -1 HFB14 р_{3/2} -2 Starting with ⁴²Al the p_{3/2} shell is filled, indicating that ⁴⁵Al is bound; and even ⁴⁷Al -3 f_{7/2} -4 -5 could be bound $(p_{1/2})$ -6 22 24 26 28 30 32 34 18 20 36 Neutron Number National Science Foundation **S** NSCL Michigan State University

Reaching the neutron dripline

Populating ²⁵O in one-proton removal reactions from ²⁶F

Identifying real two-neutron events

From decay energy to excitation energy

S_n is largest source of uncertainty

Download: ENSDF file for this dataset					
²⁴ O levels					
Elevent J [#]					
0.0 0+					
4.82×10^3 11 (2+) 0.05 MeV ^{\pm} +21-5 E _{level} : from measured decay energy=630 40 (2009Ho01).					
5.43×10^3 12 (1+) 0.03 MeV ^{&} + 12-3 E _{level} : from measured decay energy=1240 70 (2009Ho01).					
 ≈7.6×10³ (+) 0.1 MeV (2) E_{level}: from observed resonance at ≈ 0.6 (2011Ho05) deduced from the invariant mass equations in coincidence with another decay at E(n)<0.1 MeV, considered as corresponding to a previously observed decay of a 2.8 MeV, (5/2+) state (45 keV 2 resonance) in ²³O to the ground state of ²²O. L_γΓ: from Monte-Carlo simulations, both resonances (0.6 MeV in ²⁴O and 45 keV in ²³O) have L=2 (0d_{3/2} neutron decay) and Γ=0.1 MeV. 					
Decays by a two-neuron sequential cascade to 0 g.s.					
 [#] Jsing S(n)(²⁴O)=4190 140 (<u>2012Wa38</u>). <u>2009Ho01</u> used S(n)=4090 keV 100 from <u>2007Ju03</u>, thus all excitation energies quoted in <u>2009Ho01</u> have been adjusted upward by 0.1 MeV. [®] From L values deduced from Breit-Wigner line-shape fit to the experimental decay spectrum and comparison with shell-model calculations. 					
^{&} For decay to 1/2+ g.s. in ²³ O); deduced from Breit-Wigner line-shape analysis of ²³ O-neutron coincidence spectrum.					

Results confirmed by R³B-LAND

C. Caesar et al., Phys. Rev. C 88 (2013) 034313 L.V. Grigorenko et al., Phys. Rev. C 84 (2011) 021303

Lifetime measurement

New lifetime calculations

L.V. Grigorenko, I.G. Mukha, and M.V. Zhukov, Phys. Rev. Lett. 111, 042501 (2013)

Limits of beam intensity (²⁶F to ²⁵O)

C. Caesar et al., arXiv:1209:0156v2

S NSCI C.R. Hoffman et al., Phys. Rev. Lett. **100** (2008) 152502

Beyond the dripline in the *pf*-shell

B.A. Brown, Prog. Part. Nucl. Phys. 47 (2001) 517

Mg

Ne

Four-neutron emitter

- The FRDM predicts ³⁸Ne and ⁴⁴Mg to be direct four neutron emitters.
- They are bound with respect to 1-, 2-, and 3-neutron emission but unbound with respect 4-neutron emission.

Summary and outlook

- There are still hundreds of proton-rich isotopes left to be discovered
- On the neutron-rich side there are probably a few thousands isotopes reachable in the foreseeable future
- The driplines are not the limit. Spectroscopic information for nuclides beyond the dripline can be extracted from particle spectroscopy measurements
- The sophisticated setup require detailed simulations to extract the physical quantities
- It is important for the evaluators to understand the strengths and limitations of the various techniques

