Nuclear Experiments with Radioactive Isotope Beams II

Hiroyoshi Sakurai RIKEN Nishina Center / Univ. of Tokyo Radioactive isotope productions and particle identification

In-beam gamma spectroscopy Decay spectroscopy

Mass spectroscopy

Invariant mass spectroscopy Missing mass spectroscopy Others

RI Beam Factory

Physics with Exotic Nuclei

Shell Evolution : magicity loss and new magicity

Neutron Correlation in the vicinity of the Drip-line

R-process path: Synthesis up to U

EOS: asymmetric nuclear matter SN explosion, neutron-star, gravitational wave

Nuclear Magic Numbers and Shell Evolution

Magicity and its loss through determining E(2⁺)

The 1st in-beam gamma experiment

Nuclear Physics 46 (1963) 210-224; © North-Holland Publishing Co., Amsterdam

Not to be reproduced by photoprint or microfilm without written permission from the publisher

GAMMA RAYS FOLLOWING (a, xn) REACTIONS

H. MORINAGA[†] and P.C. GUGELOT Instituut voor Kernphysisch Onderzoek, Amsterdam, Netherlands

Fig. 2. Experimental set-up for the detection of gamma rays from thin targets bombarded by 27 to 52 MeV alpha particles.

Achievements with DALI2 at ZD

Island-of-inversion and beyond

A large deformation at Z=10-12 in spite of N=20 A pilot-region for nuclear structure Interplay of three ingredients: Weakly-bound natures Tensor forces Pairing Doornenbal, Scheit, et al.

Ne-32 1st excited states: PRL 103, 032501 (2009) New states in ^{31,32,33}Na: PRC 81, 041305R (2010) Mg-36,-38: PRL111, 212502 (2013) F-29: in preparation <u>Takeuchi et al.</u> Si-42 : PRL109, 182501 (2012) <u>P.Fallon et al.</u> Mg-40 : PRC 89, 041303 (2014)

Collectivity of the neutron-rich Mg isotopes

P. Doornenbal, H. Scheit et al. PRL111 212502 (2013)

Island-of-inversion and beyond

New "Magicity" of N=34 in the Ca isotopes

"Magicity" in the Ar isotopes : Ar-50 (N=32)

D. Steppenbeck et al., Phys. Rev. Lett. 114, 252501 (2015)

Shell Evolution And Search for Two-plus energies At the RIBF (SEASTAR) – a RIKEN Physics Program

MINOS (100-mm thick Liq.H₂ target and TPC system, $\Delta\beta = 20\%$) -> high luminosity and vertex position determination DALI2 -> high efficiency to access very neutron-rich nuclei

MINOS : Magic Numbers Off Stability

http://minos.cea.fr

A. Obertelli

SEASTAR : The First Campaign May 2014

(1) Extension of the N=40 Island-of-Inversion towards N=50 Spectroscopy of ⁶⁶Cr, ^{70,72}Fe

Santamaria, Louchart, Obertelli et al, PRL 115, 192501 (2015)

(2) First spectroscopy of ⁷⁸Ni

Taniuchi, Doornenbal, Yoneda et al., in preparation

Lifetime measurement for excited states

Introduction of several works at the old facility RIPS Such lifetime measurement activities should be re-encouraged/re-organized at the new facility RIBF

B(E2) measurement for the light mass region

No data for the neutron-rich Be and C isotopes

In-beam Gamma Spectroscopy at the RIPS facility

H.J. Ong et al., Phys. Rev. C 78, 014308 (2008)
Lifetime measurements of first excited states in C-16 and C-18
H.J. Ong et al., Phys. Rev. C 73, 024610 (2006)
Neutron-dominant quadrupole collective motion in C-16
D. Suzuki et al., Phys. Lett. B 666, 222(2008)
Lifetime measurements of excited states in C-17
N. Imai et al., Phys. Lett. B 673, 179 (2009)
First lifetime measurements of 2+ state in Be-12

Lifetime measurements developed Recoil Shadow Method Doppler Shift Attenuation Method Recoil Distance Method to measure B(E2) For light nuclei to which CEX is not applied.

E(2+) and B(E2) systematics for Carbon isotopes

Excited states in even-even C isotopes

New data for transition strengths in ^{16, 17,18}C based on an upgrade setup for recoil shadow method ¹⁸C: Ong et al. PRC ¹⁷C: Suzuki et al. PLB

Life-time measurements of excited states in ¹⁷C D. Suzuki, et al., PLB

$$B(M1; (1/2^+) \rightarrow 3/2^+) = (1.0 \pm 0.1) \times 10^{-2} [\mu_N^2]$$

$$B(M1; (5/2^+) \rightarrow 3/2^+) = (8.2 + 3.2/-1.8) \times 10^{-2} [\mu_N^2]$$

- $(5/2^+)$; Almost identical excitation energy and M1 strength
- $(1/2^+)$; Low excitation energy and small M1 strength
- \Rightarrow Drastic change in the structure of the 1/2+ state

s-wave dominance in the $1/2^+$ state? $[d_{5/2} \times 2^+] 1/2^+ +$ $[s_{1/2} \times 0^{+}]1/2^{+}$ $[d5/2 \times 0^+]5/2^+$ $[d5/2 \times 0^+]5/2^+$ $[s_{1/2} \times 0^+]1/2^+$ $- [d_{5/2} \times 2^+]_{3/2}^+$ $[d5/2 \times 2^+]3/2^+$ $^{17}_{4}C_{11}$ $^{21}_{10}$ Ne₁₁

3/2⁺; the [d_{5/2} × 2⁺]^{3/2+} configuration is dominant.
⇒ The 1/2⁺ state of ¹⁷C may have a large amount of the [s_{1/2} × 0⁺]^{1/2+} configuration since the M1 transition between the s_{1/2} and d_{5/2} orbitals is forbidden. The 1/2⁺ state of ¹⁷C may be a halo state ?.

Next Generation Gamma-ray Array

DALI2 (present) Nal crystals

 $dE/E \sim 8\%$

SHOGUN (future) LaBr3 crystals

dE/E ~ 2%

Asia-Ball (5-10 years) Ge crystals dE/E ~ 0.2% + SHOGUN

Doppler corrected gamma energy spectra of Mg-33 (real data)

Inelastic scattering with GRETINA at NSCL (K. Wimmer)

Neutron knockout with DALI2 at RIBF (D. Bazin)

Exotic Collective-Motions at A~110 and Their Applications to the R-process Nucleosynthesis

Decay Spectroscopy at RIBF

First decay spectroscopy in 2009

EUroball-RIKEN Cluster Array

U-beam intensity ... <u>x 50 times</u>

- 0.2 pnA → 10 pnA

Gamma-ray efficiency ... x 10 times

EURICA Collaboration

Si-strip: IBS-RIKEN

- 4 Clover detectors (Det. Effi. ~1.5% at 0.662 MeV)

 \rightarrow 12 Cluster detectors (Det. Eff. ~ 15 % at 0.662MeV)

Beam time x 40 times

- 2.5 days (4 papers) → 100 days ... (160 papers)

EURICA Project at RIBF

EUROBALL-RIKEN Cluster Array (EURICA) 2012-16

Euroball Cluster detectors Support structure Readout electronics used for GSI-RISING

RIKEN RIBF (Japan)

2011 Nov.

EURICA Installation

Ivan Kojouharov

Nick Kurtz

Henning Schaffner

EURICA

EUroball-RIKEN Cluster Array

2012-2016

Beta-delayed gamma / Isomer Spectroscopy

GSI

12 Euroball Cluster detectors Support structure Electronics used for RISING

RIBF: decay station Active stopper: DS-SSD (WAS3ABi) Liq. N₂ system, other infrastructures

+Additional detectors (LaBr₃, Plastic ...)

230 collaborators from 19 countries

About 100 days were approved for physics run

CommissioningMarch 2012Physics RunJune 2012 – June 2016

Publication at this time (August 2016)

- 23 papers (8 PRL, 5 PLB, 3 PRC(R), 7 PRC)
- 9 PhD Thesis + 1 Master Thesis
- 31 proceedings
 - 8 technical articles

WAS3ABi

Decay-station

β-Decay Half-Lives of Co76,77, Ni79,80, and Cu81: Experimental Indication of a Doubly Magic Ni78 Xu and Nishimura et al., Phys. Rev. Lett. 113, 032505 (2014)

NP0702-RIBF10: S. Nishimura Decay study for 75-78Co, 77-80Ni, 80-82Cu, and 82-83Zn near the N=50 shell closure

Isotone dependence of T1/2

FIG. 2 (color online). Time distribution of the β -decay events correlated with implanted ⁷⁹Ni. The fitting function (solid red line) considers the activities of parent nuclei (dashed-dotted black line), β -decay daughter nuclei (fine-dashed blue line), βn -decay daughter nuclei (dashed green line), a constant background (solid pink line), and other decay products (granddaughter nuclei, etc.), which are not drawn in the figure.

Isomers in 128Pd and 126Pd: Evidence for a Robust Shell Closure at the Neutron Magic Number 82 in Exotic Palladium Isotopes H. Watanabe et al., PRL 111, 152501 (2013)

Shell Evolution

Magicity Loss at N=20, 28 New magic number N=34 Double magicity of ⁷⁸Ni(Z=28, N=50) Magicity at N=82 with Z>46...

New Magicity of N=34

³²Ne:: Doornenbal, PRL 103, 032501 (2009)
^{31,32,33}Na: Doornenbal, PRC 81, 041305R (2010)
^{33,34,35}Na: Doornenbal, PTEP 2014, 053D01 (2014)
³²Mg: Li, PRC 92, 014608 (2015)
^{36,38}Mg: Doornenbal, PRL111, 212502 (2013)
⁴²Si : Takeuchi PRL109, 182501 (2012)
⁴⁰Mg : Crawford PRC 89, 041303 (2014)
⁵⁴Ca: Steppenbeck , Nature 502, 207 (2013)
⁵⁰Ar : Steppenbeck, PRL 114, 252501 (2015)
⁶⁶Cr, ⁷²Fe : Santamaria, PRL 115:192501 (2015)
¹²⁶Pd: Wang, PRC 88 054318 (2013)
¹³⁶Sn: Wang, PTEP 023D02 (2014)

^{106,108}Zr:: Sumikama, PRL 106, 202501 (2011)
^{126,128}Pd : Watanabe, PRL 111, 152501 (2013)
⁷⁸Ni: Xu, PRL 113, 032505 (2014)
^{136,138}Sn : Simpson, PRL113, 132502 (2014)

Mass measurements for shell evolution

Yamaguchi (Saitama U.), Wakasugi (RIKEN), Uesaka (RIKEN), Ozawa (Tsukuba U.), et al.

"Revolution" in the r-process research

Bunch of T1/2 data for A~100 A standard model assuming (n,gamma) equilibrium reproduces the r-abundance up to rare-earth region

Mass, beta-delayed neutron emission probability measurement in future

S. Nishimura et al., PRL. 106, 052502 (2011)
Z. Y. Xu, S. Nishimura *et al.*: PRL. 113, 032505 (2014)
G. Lorusso, S. Nishimura *et al.*: PRL. 114, 192501 (2015)
G. Benzoni, A.I. Morales, H. Watanabe *et al.*: PRC 92, 044320 (2015)
P. Lee, C.-B. Moon, C. S. Lee, A. Odahara *et al.*: PLB 751, 107 (2015)

Next step should be towards the 3rd peak

BRIKEN: beta-delayed neutron detection (He-3)

Very high efficiency neutron detector → Survey of beta-delayed multi-neutron & T1/2 2016He-3 detector system

ORNL-JINR-GSI-UPC-RIKEN 182 counters

Table 1: 3 He tubes available within the BRIKEN Collaboration.

Owner	Pressure	Size		Number of
	(atm)	Diameter	Eff. Length	Counters
		(inch/cm)	(inch/mm)	
GSI	10	1 / 2.54	23.62 / 600	10
JINR	4	1.18 / 3.0	19.69/500	20
ORNL	10	2 / 5.08	24/609.6	67
ORNL	10	1 / 2.54	24/609.6	17
RIKEN	5.13	1 / 2.54	118.1/300	26
UPC	8	1 / 2.54	23.62/600	42
Total				182

New Method for Spin Aligned RI-beam Production

Nuclear Spectroscopy Lab.

Neutron Correlation in the vicinity of the Drip-line

Halo: low density nuclear (neutron) matter in the lab. Multi-neutron correlation on and beyond the drip-line?

Element Number Zero: Tetra-neutron system

"Nucleus made only of neutrons" Benchmark for ab initio calculations NN, NNN, NNNN... interactions high T interactions Multi-body resonances

A high statistics experiment was conducted June 2016.

Kisamori, Shimoura et al., PRL 116, 052501 (2016)

Clear strength with 4.9σ significance level $E_{4n} = 0.83 \pm 0.65$ (stat.) ± 1.25 (syst.) MeV Upper limit of $\Gamma = 2.6$ MeV (FWHM) Cross section: 3.8 nb (integrated up to $\theta_{CM} < 5.4$ degree) Energy resolution: 1.2 MeV Uncertainty of calibration: ± 1.3 MeV Background : 0.02 events/2MeV

<u>Superconducting</u> <u>Analyzer for</u> <u>MU</u>lti-particle from <u>RA</u>dio <u>I</u>sotope Beam

Kinematically Complete measurements by detecting multiple particles in coincidence

Commissioning Experiment March 2012

²⁶O: barely unbound

N=16 shell closure is confirmed

USDB cannot describe 2⁺ energy at ²⁶O

→effect of pf shell? and/or continuum? Or other effects? (such as 3N forces, 2n correlation)
Y. Kondo et al., PRL 116, 102503 (2016)

Ground state

5 times higher statistics than previous study $E_{decay} = 18 \pm 3(stat) \pm 4(syst) \text{ keV}$ Finite value is determined for the first time 2⁺ excited state

 $E_{decay} = 1.28^{+0.11} {}_{-0.08} MeV$ Observed for the first time

Go much beyond the dripline: Extension to ²⁸O (SAMURAI21 (Y. Kondo) in Nov-Dec 2015)

SCRIT Facility for e+RI scattering

-> 10²⁹/cm²/s

SLOWRI Device for Trap Experiments

Wada, Sonoda et al.

3)Resonance Ionization Spectroscopy

Parasitic RI beam production, spin, moments, radii..

1)Optical spectroscopy

Takamine et al, PRL 112(2014)162502

2)Mass measurements of short-lived nuclei

RI Beam Factory

Experimental Devices (1) : spectrometer

ZeroDegree (2008-)

Beam line spectrometer low-p (E) transfer reactions $p/\Delta p \sim 2000-4000$

PID for ejectiles with A<200

In-beam gamma spectroscopy for bound excited states missing mass with detectors for target recoiling

<u>SAMURAI (2012-)</u>

Versatile spectrometer with a super. dipole magnet high-p (E) transfer reactions $p/\Delta p \sim 700$ at Z~8 Invariant mass spectroscopy for unbound states Neutron corr. in halo, O-26, GDR, alpha-cluster, EOS in HIC (2015-), 3NF...

<u>SHARAQ (2009-)</u>

high-resolution spectrometer p/ Δ p ~ 15000

missing mass spectroscopy with RI beams Exotic modes such as IVSMR, DGTR

Experimental Devices (2) : unique device

SCRIT (2012-)

e- + RI scattering for charge density distribution
U-238 photo-fission by 150-MeV e-beam (10W->1kW)
Electron beam 150-700 MeV 300mA
high-res. Spectrometer
Luminosity ~ 10^27 /cm2/s for stable isotopes
2015- data production
skin-thickness via p-elastic and e-elastic

<u>Rare-RI Ring (2013-)</u>

Isochronous mass measurement ~ O(1) ppm C=60.3m, p/ Δ p = +/- 0.5% Trans. Emittance 20pi/10pi mm mrad 2013- Commissioning 2016- data production

SLOWRI (2014-)

Gas-catcher system to slow down RI beams mass, laser spec., decay studies 2014 commissioning 2015 day-one exp.

Transmutation for LLFP : Motivation

Nuclear transmutation facility dedicated for nuclear waste of FP? FP is dominant in nuclear waste

Partitioning technique + deep geological disposal are being considered...

MA -> ADS

FP -> ??

Possible FP transmutation? to minimize FP activities neutron induced transmutation with an accelerator system or others?

-> almost no reaction data...

Transmutation for LLFP : The First Challenge April, 2014

RIKEN, UT, Miyazaki, Kyushu ...

A/Q