

Decay Data - Experiment

Filip G. Kondev kondev@anl.gov

decay data are very rich source of nuclear structure information & are of importance to many other areas

- nuclear structure often offer the best quantities, because the complexity of spectra is reduced
- astrophysics especially on the "r-process" side neutronrich nuclei
- \checkmark atomic masses proton-rich (Q α & Qp); neutron-rich (Q β –)
- applications of nuclear science

Plan

will cover in somewhat details experimental α and β decays

isomer decays – lectures by Prof. P. Reagan

Atomic Data and Nuclear Data Tables 103-104 (2015) 50-105

Configurations and hindered decays of *K* isomers in deformed nuclei with A > 100

F.G. Kondev^{a,*}, G.D. Dracoulis^{b,1}, T. Kibédi^b

IOP Publishing

- Rep. Prog. Phys. **79** 07630

Review of metastable states in heavy nuclei

G D Dracoulis^{1,4}, P M Walker² and F G Kondev³

Introduction

Experimental Decay Data

✓ experimental results obtained following α -, β ⁻-, β ⁺, EC, IT, p, cluster, etc. decay processes

Evaluated Decay Data

 recommended (best) values for nuclear levels and decay radiation properties, deduced by the evaluator using all available experimental data & theoretical calculations (e.g. electron conversion coefficients)

Myth: decay data evaluation deals only with decay data – many properties come from other decays and reactions (adopted level properties), e.g. Eγ, Iγ, MR, ICC, ...

Introduction – cont.

- controls the lifetime of the parent
 - the window of daughter states available

α-decay – cont.

$$|I_i - I_f| \le l_\alpha \le |I_i + I_f|$$
$$\pi_i \pi_f = (-1)^{l_\alpha}$$

even-even nuclei: $0+ -> 0+; I_{\alpha}=0$ odd-A: $1/2+ -> 1/2+; I_{\alpha}=0,1$ $1/2+ -> 3/2+; I_{\alpha}=1,2$ $1/2+ -> 9/2-; I_{\alpha}=4,5$

I. Ahmad et al., Phys. Rev. C68 (2003) 044306

Strong dependence on I_{α}

- ✓ fastest decay for I_{α} =0
- Configuration dependence
- ✓ fastest for the same configurations

Hindrance Factor in α-decay

HF < 4 – favorite decay (fast)

 $HF_{i} = \frac{t_{1/2}^{\alpha_{i}}(\exp)}{t_{1/2}^{\alpha_{i}}(th)} = \frac{T_{1/2}(\exp) / BR_{i}}{t_{1/2}^{\alpha_{i}}(th)}$

 $t_{1/2}^{\alpha_i}(th)$ M.A. Preston, Phys. Rev. **71** (1947) 865

$$t_{1/2}^{\alpha} = \ln 2 \frac{r_0}{2v} \frac{\mu^2 (H_i^2 + K_i^2) + \tan^2 \alpha_0 (C_i^2 + S_i^2) + 2\mu \tan \alpha_0 (C_i K_i - S_i H_i)}{\mu^2 \tan \alpha_0 (H_i C_i + K_i S_i) Q_i} e^{+2\omega_0}$$

✓ depends on r₀ and Q(α) - nuclear radius: R=r₀ x A^{1/3} V = $\sqrt{2E_{\alpha} / m_{\alpha}}$

$$Q\alpha_i = Q\alpha_0 - E_i = [m(A,Z) - m(A-4,Z-2) - m\alpha] - E_i$$
 from AME12

$$Q\alpha_0 = E\alpha_0 \times \frac{m(A,Z)}{m(A-4,Z-2)} = E\alpha_0 \times \left(1 + \frac{4}{(A-4)}\right)$$
 Eag, Qao in keV

$$Q\alpha_0 = \frac{2 \times m(A,Z) \times E\alpha_0}{m(A-4,Z-2) + \sqrt{m(A-4,Z-2)^2 - 2 \times m(A,Z) \times E\alpha_0}} \approx E\alpha_0 \times \left(1 + \frac{4.0015}{(A-4)}\right) + 0.15$$

relativistic formula⁷

α decay - Experiments

magnetic spectrometers
 ionization chambers
 semiconductor detectors – mostly Si

 Si(Au), PIPS, DSSD, ...

using radioactive sources (off-line)
 when lifetimes are sufficiently long

using nuclear reactions (on-line)

- ✓ implanting on a catcher foil
- ✓ implanting directly on the DSSD

absolute determinations of α energies using the BIPM magnetic spectrometer with a semi-circle focusing of alpha-particles. These measurements were performed in the 70's - 80's for the most intense alpha-transitions

- ²²⁸Th, ^{224,226}Ra, ^{220,222,219}Rn, ^{216,212,218,214,215}Po, ²¹²Bi, ²²⁷Th, ²²³Ra, ²¹¹Bi, ²⁵³Es, ^{242,244}Cm, ²⁴¹Am, ²³⁸Pu B. Grennberg, A. Rytz, Metrologia 7, 65 (1971)
- ²³²U, ²⁴⁰Pu D.J. Gorman, A. Rytz, H.V. Michel, C. R. Acad. Sci., Ser. B 275, 291 (1972)
- ²¹⁰Po D.J. Gorman, A. Rytz, C. R. Acad. Sci., Ser. B 277, 29 (1973)
- ²³⁹Pu A. Rytz, Proc. Intern. Conf. Atomic Masses and Fundamental Constants, 6th, East Lansing (1979)
- ✓ ²³⁶Pu A. Rytz, R.A.P. Wiltshire, Nucl. Instrum. Methods 223, 325 (1984)
- ²⁵²Cf, ²²⁷Ac A. Rytz, R.A.P. Wiltshire, M. King, Nucl. Instrum. Methods Phys. Res. A253, 47 (1986).

Two parameters - the radius of curvature ρ and the mean magnetic induction **B**.

 $E(\alpha) = a (B\rho)^2 + b (B\rho)^4 + d (B\rho)^6$ The factors a, b, d are derived from the latest adjustment of fundamental constants (m_e, e and N_A).

The components of systematic uncertainty are due to length measurements $(4.6 \cdot 10^{-5} \text{ E}(\alpha))$, measurement of mean magnetic induction $(1.3 \cdot 10^{-5} \text{ E}(\alpha))$ and combined effect of uncertainties of fundamental constants $(0.3 \cdot 10^{-5} \text{ E}(\alpha))$, i.e. the total systematic uncertainty is ~5 \cdot 10^{-5} $\text{E}(\alpha)$ or ~0.3 keV (²³⁹Pu).

Magnetic $\pi\sqrt{2} \alpha$ -spectrometers with high luminosity

In 1960's three such big magnetic α spectrometers were built in the Soviet Union – in Moscow (Baranov et al.), St. Petersburg (Dzhelepov et al.) and Dubna (Golovkov et al.).

In respect of alpha-particle energies the measurements with $\pi\sqrt{2}$ magnetic spectrometers are relative – one needs to use alpha-energy "standards".

Argonne double-focusing magnetic spectrometer

 \checkmark energy resolution (FWHM) of 5 keV

✓ transmission efficiency of Ω =0.1 % for 6 MeV α -particles

HYSICAL REVIEW C

VOLUME 8, NUMBER 2

AUGUST 1973

Alpha Decay of ²⁵¹Fm[†]

12

Semiconductor detectors

semiconductor detectors: Passivated Implanted Planar Silicon (PIPS)

✓ energy resolution (FWHM) of ~<u>10 keV</u>

✓ small geometrical efficiency of Ω =0.225% in order to minimize α -e- coincidence summing effects

thin and isotopically pure sources

ATOMIC DATA AND NUCLEAR DATA TABLES 47, 205-239 (1991)

RECOMMENDED ENERGY AND INTENSITY VALUES OF ALPHA PARTICLES FROM RADIOACTIVE DECAY

A. RYTZ*

Bureau International des Poids et Mesures F-92312 Sèvres Cedex, France

recommended values for E α and I α

Direct high-precision mass measurements on ^{241,243}Am, ²⁴⁴Pu, and ²⁴⁹Cf

M. Eibach,^{1,2,*} T. Beyer,¹ K. Blaum,¹ M. Block,³ Ch. E. Düllmann,^{3,4,5} K. Eberhardt,^{2,5} J. Grund,⁴ Sz. Nagy,¹ H. Nitsche,^{6,7} W. Nörtershäuser,^{2,3,8} D. Renisch,² K. P. Rykaczewski,⁹ F. Schneider,^{2,10} C. Smorra,^{1,†} J. Vieten,¹¹ M. Wang,^{1,12,13} and K. Wendt¹⁰

PENNING trap

strong homogeneous magnetic field weak electric 3D quadrupole field

20.8(2)

20.7(3)

21.6(5)

PHYSICAL REVIEW C 91, 044310 (2015)

High-resolution α and electron spectroscopy of $^{249}_{98}$ Cf

I. Ahmad, J. P. Greene, F. G. Kondev, and S. Zhu Argonne National Laboratory, Argonne, Illinois 60439, USA

magnetic spectrograph

PIPS

still 8.1 keV difference!!!

251 Cf α -decay

PHYSICAL REVIEW C 68, 044306 (2003)

Energy levels of ²⁴⁷Cm populated in the α decay of ²⁵¹₉₈C

I. Ahmad et al., Phys. Rev. C68 (2003) 044306

$^{251}Cf \alpha$ -decay – cont.

Enerov (keV)	Intensity (%)	Transitions Initial→Final
20.40 0.05	0.020 (0.0)	265.06
38.48±0.05	0.038 ± 0.006	$265.86 \rightarrow 227.38$
52.45±0.05	0.048 ± 0.005	318.31→265.86
58.03±0.05	0.024 ± 0.005	$285.41 \rightarrow 227.38$
60.5±0.1	0.010 ± 0.003	$345.9 \rightarrow 285.41$
61.67±0.05	0.40 ± 0.03	$61.67 \rightarrow 0$
73.00 ± 0.08	0.040 ± 0.005	$134.65 \rightarrow 61.67$
84.35 ± 0.08	0.040 ± 0.005	$219.0 \rightarrow 134.65$
104.57 ± 0.02	12.6 ± 0.7	Cm Ka ₂
109.26 ± 0.02	19.8 ± 1.0	Cm Ka ₁
113.7 ± 0.1	0.024 ± 0.005	$518.58 \rightarrow 404.90$
$122.31 \pm 0.02 \pm$		Cm <i>K</i> β_3
123.40 ± 0.02	$7.7{\pm}0.5$	Cm <i>K</i> β ₁
$127.01 \pm 0.04 +$		$\operatorname{Cm} K\beta_2 + K\beta_4$
128.00 ± 0.05	2.6 ± 0.2	Cm KO _{2,3}
134.65 ± 0.08	0.014 ± 0.003	$134.65 \rightarrow 0$
$157.35 {\pm} 0.08$	0.020 ± 0.004	$219.0 \rightarrow 61.67$
165.70 ± 0.05	0.12 ± 0.01	$227.38 \rightarrow 61.67$
177.52 ± 0.02	17.3 ± 0.9	$404.90 \rightarrow 227.38$
227.38 ± 0.02	6.8 ± 0.3	$227.38 \rightarrow 0$
256.65 ± 0.08	0.13 ± 0.01	$318.31 \rightarrow 61.67$
$265.86 {\pm} 0.08$	0.43 ± 0.03	$265.86 \rightarrow 0$
284.2 ± 0.1	0.12 ± 0.01	$345.9 \rightarrow 61.67$
285.41 ± 0.08	1.13 ± 0.09	$285.41 \rightarrow 0$
289.3 ± 0.1	0.070 ± 0.007	$516.7 \rightarrow 227.38$
291.20 ± 0.08	0.30 ± 0.03	$518.58 \rightarrow 227.38$
315.8 ± 0.1	0.024 ± 0.003	$581.7 \rightarrow 265.86$
318.3 ± 0.1	0.050 ± 0.005	$318.31 \rightarrow 0$
345.9 ± 0.1	0.043 ± 0.004	$345.9 \rightarrow 0$
354.3 ± 0.1	$0.013 \!\pm\! 0.002$	$581.7\!\rightarrow\!227.38$

I. Ahmad et al., Phys. Rev. C68 (2003) 044306

Spectroscopy near the proton drip line

Decay Tagging

The Heart of RDT: the DSSD

80 x 80 detector 300 μm strips, Each with high, low, and delay line amplifiers, for implant, decay, and fast-decay recognition.

Data from DSSD showing implant pattern 40 cm beyond the focal plane

$\alpha 1 - \alpha 2$ (parent-daughter) correlations

F.G. Kondev et al. Phys. Lett. B528 (2002) 221

Odd-Z Au (Z=79) isotopes-sample spectra

Neutron-deficient Au nuclei (Z=79)

¹⁷⁹Tl: α-decay properties

¹⁷⁹Tl: lifetimes

¹⁷⁵Au: lifetimes

29

On-Line Alpha Spectroscopy of Neutron-Deficient Actinium Isotopes*

KALEVI VALLI, WILLIAM J. TREYTL,[†] AND EARL K. HYDE Lawrence Radiation Laboratory, University of California, Berkeley, California

- using HI fusion reactions to produce various nuclei
 collect recoils on a catcher foil
- ✓ Si(Au) surface-barrier detector or PIPS

 using excitation function measurements for isotopic identification

No direct detector implantation

1 GeV pulsed proton beam on 51 g/cm2 ThCx target on-line mass separation (ISOLDE)/CERN

H. De Witte et al., EPJ A23 (2005) 243

Isotope	Energy (keV)	$T_{1/2}$	Reference
²⁰⁰ Fr	7473(12) 7500(30) 7468(9)	$\begin{array}{c} 49(4) \ \mathrm{ms} \\ 570^{+270}_{-140} \ \mathrm{ms} \\ 19^{+13}_{-6} \ \mathrm{ms} \end{array}$	this work [4] [5]

Windmill System (WM) at ISOLDE

A. Andreyev et al., PRL 105, 252502 (2010)

Setup: Si detectors from both sides of the C-foil

- Simple setup & DAQ: 4 PIPS (1 of them annular)
- Large geometrical efficiency (up to 80%)
- 2 fold fission fragment coincidences
- ff-gamma coincidences
- Digital electronics

Beta decay : Introduction

<u>Beta Decay:</u> universal term for all weak-interaction transitions between two neighboring isobars

Takes place is 3 different forms β -, β + & EC (capture of an atomic electron)

a nucleon inside the nucleus is transformed into another

Classification of β decay transition

Classification of the allowed decay

$$\Delta I = \left| I_i - I_f \right| \equiv 0 \qquad I_i \neq 0$$

Classification of β decay transitions

Type of transition	Order of forbiddenness	ΔI	$\pi_i \pi_f$
Allowed		0,+1	+1
	1	∓2	-1
Forbidden unique	2	∓3	+1
	3	∓ 4	-1
	4	Ŧ 5	+1
	•	•	•
	1	0 <i>,</i> ∓1	-1
Forbidden	2	∓2	+1
	3	∓ 3	-1
	4	∓ 4	+1
	•	•	•

What we want to know accurately?

$$f_n = \int_1^W p_e W_e (W_0 - W_e)^2 F(Z, W_e) (C_n / \eta^2) dW_e$$

$$HF_{\beta}^{n} = \frac{T_{1/2}^{\beta_{i}}}{T_{1/2}^{n}} = \left(\frac{g^{2}\eta^{2}}{2\pi^{3}\ln 2}\right)f_{n}t$$

Some useful empirical rules

The fifth power beta decay rule of tumb:

the speed of a β transition increases approximately in proportion to the fifth power of the total transition energy (if other things are being equal, of course)

$$I_{\rm i} = \frac{1}{\tau} \propto [(M(Z) - M(Z \pm 1))c^2]^5$$

 depends on spin and parity changes between the initial and final state
 additional hindrance due to nuclear structure effects – isospin, "1forbidden", "K-forbidden", etc.

Log *ft* values

0.0 5.14 min

%β⁻=100

Log ft

1/2+

3/2+

1/2+

3/2+

5/2+

3/2+

1/2+

5.62

6.43

7.03

7.61

6.51

5.257

8.701u

1/2-

²⁰⁵₈₀Hg ₁₂₅

Q-=15334

Iβ-

0.0049

0.006

0.007

0.0038

0.015

3.2

96.8

$$t \equiv T_{1/2}^{\beta_i} = \frac{T_{1/2}^{\exp}}{P_{\beta_i}}$$
$$P_{\beta_i} = \eta [I^{tot}(out) - I^{tot}(in)]$$

Intensities: I(y+ce) per 100 parent decays

205 81TI 124

$$I^{tot}(out/in) = \sum_{i} I_{\gamma_i}(1 + \alpha_{T_i})$$
$$\alpha_T(M1 + E2) = \frac{\alpha_T(M1) + \delta^2 \alpha_T(E2)}{1 + \delta^2}$$

□ What we want to know accurately $\checkmark T_{1/2}, I_{\gamma}, \alpha_T \& \delta$

In

$$I^{tot}(521+721) = 0.086(16) = 0.69(10)$$

$$I^{tot}(416+619) = 0.78(10) \quad (net)$$

$$Out$$

 $\eta = 0.0022 \rightarrow t = 2.056 \times 10^{6} [s] \rightarrow \log t = 6.31 \rightarrow \log f = 2.386 \rightarrow \log ft = 8.7$

1434.0

1340.3

1218.6

619.3

0.0

Rules for Spin/Parity Assignments

PHYSICAL REVIEW C

VOLUME 7, NUMBER 5

MAY 1973

Rules for Spin and Parity Assignments Based on Logft Values*

S. Raman and N. B. Gove Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (Received 25 October 1972)

□ There are only a few cases where unambiguous assignment can be made

□ "pandemonium effect" – neutron rich nuclei – log *ft* is a just lower limit!

needs to know the decay scheme and its properties accurately!

Log *ft* values – latest review

Nuclear Data Sheets 84, 487 (1998) Article No. DS980015

~3900 cases -> gives centroids and widths

Review Of Log*ft* Values In β Decay^{*}

B. Singh, J.L. Rodriguez, S.S.M. Wong & J.K. Tuli

Beta decay of odd-odd nuclei

$$log ft = (log ft)_{sp} \times P^2 \times HF$$

 $\pi 9/2^{-}[514] <- \sqrt{7}/2^{-}[514]$: *log* ft =4.4 (spin-flip) $\pi 7/2^{+}[404] \rightarrow \sqrt{9}/2^{+}[624]$: *log* ft =6.7

β– decay of N-rich nuclei

High-resolution gamma-ray spectroscopy

depends on the accurate knowledge of the decay scheme – level energies, J^π, mult., ICC

not studied with state-ofthe art equipments – low sensitivity & effect of the "Pandemonium"

Total Absorption Gamma-ray Spectroscopy (TAGS)

We need both - HRGS and TAGS!

Fast timing demonstration with EURICA

18 LaBr₃(Ce) scintillators (Φ1.5"×2") on three vacant slots for γ rays ※Contributed from U. of Surrey and Brighton

BC-418 plastic counters (2-mm thick) beside the DSSDs for β rays

Nov. 2014 (3 days)

- High intensity (10~15 pnA)
 Slits optimized for ^{170,172}Dy
 ΔA/Q ~ 0.05 %
 - ⇒ Separate charge state

lon	BigRIPS
¹⁷⁰ Dy ⁶⁶⁺	12932
¹⁷² Dy ⁶⁶⁺	8272

- courtesy of H. Watanabe
 - ★ Isomer in µs
 - Isomer in ms

Low-energy electron & Shorter time range

⇒ Internal decay from isomer

High-energy electron & Shorter time range

⇒ β decay from isomer

High-energy electron & Longer time range

⇒ β decay from ground state

Long-lived isomer ($T_{1/2} = 0.71$ s) $\implies K^{\pi} = 8$ -: v7/2⁻[514] \otimes v9/2⁺[624]

Internal decay to $\begin{cases} K^{\pi} = 0 + \text{ ground-state band via 400 keV [E1] and 758 keV [M2]} \\ K^{\pi} = 2 + \gamma \text{-vibrational band via 45 keV [E1] (unobserved)} \end{cases}$

■ β decay to 172 Ho \Rightarrow log ft = 4.9(4) \times Feeding only to the 216-keV transition is assumed

Allowed-unhindered β decay

TRIUMF, CANADA

8π & SCEPTAR

G.F. Grinyer et al., Phys. Rev. C 71, 044309 (2005)

CARIBU gas catcher: transforms fission recoils into a beam with good optical properties

- Based on smaller devices developed at ANL
 - Radioactive recoils stop in sub-ppb level impurity Helium gas
 - Radioactive ion transport by RF field + DC field + gas flow
 - Stainless steel and ceramics construction (1.2 m length, 50 cm inner diameter)
 - Fast and essentially universally applicable

DC gradient

252**~**

- Extraction in 2 RFQ sections with μ RFQs for differential pumping

Selection by compact CARIBU isobar separator

 $M/\Delta M = 14000-20000 @ >70\%$ transmission ... still being improved

Contamination at A=108 versus separator resolution

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier.com/locate/nimb

First operation and mass separation with the CARIBU MR-TOF

Tsviki Y. Hirsh^{a,b,*}, Nancy Paul^{b,c}, Mary Burkey^{b,d}, Ani Aprahamian^c, Fritz Buchinger^e, Shane Caldwell^{b,d}, Jason A. Clark^b, Anthony F. Levand^b, Lin Ling Ying^b, Scott T. Marley^c, Graeme E. Morgan^{a,b}, Andrew Nystrom^{b,c}, Rodney Orford^{b,e}, Adrian Pérez Galván^{b,a}, John Rohrer^b, Guy Savard^{b,d}, Kumar S. Sharma^a, Kevin Siegl^{b,c}

Generation: Generator:

- ✓ Based on ISOLTRAP/ISOLDE design:
- ✓ ~1.3 m long MR-TOF
- ✓ Currently mass resolving power, R ~ 50,000 with ~ 50% transmission in ~ 15 ms

multi-reflection time-of-flight mass separator

BEAM INTERACTIONS WITH MATERIALS

ND ATOMS

CrossMark

mixture of electrostatic mirror 2 in-trap lift electrode electrostatic mirror 1 different 160 mm 460 mm 160 mm species to Penning traps ions from **RFQ** buncher transmitted time-of-flight separation separated ion trajectory switched electric deflected atomic species in multiple revolutions potentials ions ions

The CARIBU low-energy experimental area

- Delivers 1.5 kV to 10 kV beam to experimental stations
- Pulsed beams with rates from
- \sim 50 ms to seconds
- Low emittance
 - Experimental stations:
 - CPT

TAPE STATION

(installed)

Tape cycle

X-ARRAY

(installed)

LASER SPECTROSCOPY: After CPT move (end of 2016)

• Limited amount of space ... removal of Tandem will provide new experimental area

β⁻ decay studies with Gammasphere

110 Ge detectors (Comptonsuppressed), covering 4π

- ✓ high resolution & sensitivity
- powerful β-γ-γ coin resolving weak cascades & isomers!

GS as a calorimeter

P. Reiter et al. Phys.Rev.Lett. 84, 3542 (2000)
 with a modest upgrade – suitable for β⁻ decay studies

combining direct spectroscopy with callorimetry

isomer studies: ¹⁵⁶Pm decay

detailed $\beta - \gamma - \gamma$ spectroscopy

isomer studies: ¹⁶²Eu decay

isomer studies: ¹³⁰In

Expanded ¹⁴²Cs β-decay level scheme

CARIBU & Gammasphere at ANL

