

Radionuclides and The Global Fight Against Cancer Filip G. Kondev kondev@anl.gov

Stable and radioactive isotopes play critical roles in a variety of technological applications important to modern society

- ✓ Basic scientific research
- ✓ Nuclear Medicine
- ✓ Oil Industry
- ✓ National Security and HMS
- ✓ Power sources (e.g. nuclear batteries)
- ✓ Tracers
- Many (other) commercial applications

Estimated Cancer Deaths in the US in 2013 ~580000 The second most effective killer, after the heart diseases ...

Main cancer treatments

Surgery

Chemo-, Bio- and Immuno- therapies

Transplantation

Cancer vaccines, hyperthermia, etc.

Radiation therapy

using particle accelerators - n, e-, p & HI (hadron)
 using radioisotopes

Why Radioisotopes are useful?

Diagnostic (imaging):

✓ tumors

- ✓ aneurysms (weak spots in blood vessel walls)
- irregular or inadequate blood flow to various tissues
- blood cell disorders and inadequate functioning of organs, such as thyroid and pulmonary function deficiencies

Therapeutic:

 \checkmark using radiation (α , β and Auger e-) to kill cancer cells (tumors)

Diagnostic - PET

$emission \ of two \ 511-keV \ gamma \ rays \ following \ \beta+ \ decay \\ proton-rich \ nuclei$

short-lived: ¹⁸F, ¹¹C, ¹³N, ¹⁵O generators: ⁶⁸Ge/⁶⁸Ga, ⁸²Sr/⁸²Rb long-lived: ⁴⁴Sc, ⁶⁴Cu, ⁷⁶Br, ⁸⁶Y, ¹²⁴I

¹⁸F PET-CT: to identify and localize high-risk coronary plaque

N.V. Joshi et al., The Lancet, http://dx.doi.org/10.1016/S0140-6736(13)61754-7

10 November 2013 Last updated at 20:14 ET

Heart attack risk identified by new scan

By James Gallagher Health and science reporter, BBC News

Diagnostic – Gamma Cameras & SPECT

2D (Gamma cameras) & 3D (SPECT): using low energy gamma rays

.. but also novel detector technology for better position resolution

99mTc (141 keV), ⁶⁷Ga (185 keV), ¹¹¹In (171 keV), ¹²³I (159 keV), ¹³³Xe (81 keV), ²⁰¹TI (70 keV)

Therapeutic

<u>α emitters:</u>

E=5-9 MeV; R=40-100 μm (5-10 cell diameter); LET 80-100 keV/μm along the trace path ²¹¹At, ²¹²Bi, ²¹³Bi, ²²⁵Ac

<u>β– emitters:</u>

E=50 keV-2 MeV; R=50 μm – 12 mm; LET 0.2 keV/μm ³²P, ⁸⁹Sr, ⁹⁰Y, ¹³¹I, ¹⁶⁶Ho, ¹⁷⁷Lu, ¹⁸⁶Re

Auger emitters:

E=10 eV-10 keV; R=5 – 500 nm; LET 4-26 keV/μm ¹¹¹In, ^{123,125}I, ⁶⁷Ga, ^{193m}Pt

A. Kasis et al., J. Nucl Med. 46 (2005) 3s

⁶⁷Cu and ⁶⁷Ga examples

Matching Pairs

Diagnostic	Pair	Therapeutic
^{99m} Tc (SPECT)	^{99m} Tc/ ¹⁸⁸ Re	¹⁸⁸ Re (β–)
¹²³ I (PET)	¹²³ / ¹³¹	¹³¹ Ι (β–)
¹²⁴ I (SPECT)	¹²⁴ / ¹³¹	¹³¹ Ι (β–)
¹¹¹ In (SPECT)	¹¹¹ In/ ⁹⁰ Y	⁹⁰ Υ (β–)
⁸⁶ Y (PET)	86Y/90Y	⁹⁰ Υ (β–)

some of the therapeutic radionuclides emit γ rays that can be used for diagnostic (SPECT): ¹⁷⁷Lu, ^{186,188}Re & most of the Auger emitters

Which are the best isotopes?

Nuclear Physics properties

- 🗸 half-life
- decay energies & emission probabilities
- production and availability (cost)
- Chemical, Biological and other properties

Targeted radionuclide therapy

Nuclear Data needs

cross sections for various production reactions – neutrons, charged particles, photons

- decay data
 - ✓ important for cross-sections measurements
 - important for a specific medical application, e.g. imaging, diagnostic, treatment, etc.
- data associated with atomic radiations produced in radioactive decays - Auger, Coster-Kronig & super-Coster-Kronig and other shake-off electrons

Decay Data needs – cont.

Q values – AME – new tables coming by the end of this year

Lifetime (evaluated) – in most cases under control (except ^{186m}Re for example), but there is no consistency (recipe) between different evaluations

D Emission energies & probabilities (γ , β –, β +, α , EC, CE, Auger electrons) and relevant spectra

 \checkmark must know the decay scheme - Ex, J^{π}, mult. (parent-daughter)

✓ evaluated data: energies and emission probabilities & δ (for γ 's) - usually several measurements, except for **g.s. to g.s \beta decay** – treatment of discrepant data

✓ CE data – usually from BrIcc, but when mult. are not known or E0?

✓ derived data: atomic radiation, EC/B+ ratios, β -decay energies and emission probabilities

Why ⁶⁷Cu?

 \Box Excellent NP properties: T_{1/2}, E_{γ} & <E_{β ->}

- \checkmark therapeutic: β emitter
- diagnostic (SPECT): 93 keV & 184 keV γ rays
- ✓ matching pair: ⁶⁴Cu(PET)/⁶⁷Cu

Well suited biological properties & well understood chemistry

- Main issues production & cost
- ✓ availability is limited
- ✓ \$295/mCi DOE-NIDC 4 doses x 65 mCi = 260 mCi = \$77K

⁶⁷Cu production

Review

Applied Radiation and Isotopes 70 (2012) 2377-2383

The production, separation, and use of ⁶⁷Cu for radioimmunotherapy: A review

Nicholas A. Smith^{a,*}, Delbert L. Bowers^a, David A. Ehst^b

^a Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA ^b Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA

⁶⁷ Zn	(4.1%)
⁷⁰ Zn	(0.62%)
⁶⁴ Ni	(0.93%)

⁶⁷ Zn(n,p) –	~1.2 mb
$707n(n \alpha) -$	~14 mh

- ⁶⁴Ni(α ,p) ~25 mb
- ⁶⁸Zn(p,2p) ~25 mb ⁶⁸Zn(γ,p) – ~10 mb

31 Ga 35	31 Ga 36	31 Ga 37	31 Ga 38	3 1Ga 39	31 Ga 40
9.304 h 0+ Δ=-63724 (3) β+=100%	3.2617 d 3/2- $\Delta = -66878.9$ (1.2) $\epsilon = 100\%$	67.71 m 1+ Δ=-67085.7 (1.5) β+=100%	Stable 3/2- ∆=-69327.8 (1.2) Abndnc=60.108% (9)	$\begin{array}{c} 21.14 \text{ m } 1+\\ \Delta = -68910.1 \ (1.2)\\ \beta - \approx 100\%\\ \epsilon = 0.41\% \ (6) \end{array}$	Stable 3/2- ∆=-70139.1 (0.8) Abndnc=39.892% (9)
§5 Zn 35	§б Zn зб	57 Z n 37	58 Zn 38	58 Z n 39	38 Zn 40
1.6 μs (1/2)- Eex=53.928 μ=-65911.8 (0.7 IT=100% β+=100%	Stable 0+ Δ=-68899.1 (0.9) Abndnc=27.73% (98)	9.07 µs 1/2- Stable 5/2- Eex=93.312 Q=-67880.1 (0.9 IT=100% Abndnc=4.04% (16	State 0+ Δ=-700(-8 (0.9) Abndnc=: 45% (63)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Stable 0+ Δ=-69564.7 (1.9) Abndnc=0.61% (10) 2β- ?
29 Cu 35	25 Cu 36	29 Cu 37	25 C u 38	28 Cu 39	29 Cu 40
$\begin{array}{c} 12.701 \ h \ 1+\\ \Delta=-65424.1 \ (0.5)\\ \beta+=61.5\% \ (3)\\ \beta-=38.5\% \ (3) \end{array}$	Stable 3/2- Δ=-67263.5 (0.7) Abndnc=30.85% (15)	600 ns (6)- Eex=1154.2 μ=-66258.1 (0.7 IT=100% β-=100%	$\Delta = -6; \qquad \beta = -0; \qquad \beta = $	3.75 m 6- Bex=721.26 &=-65567.0 (1.6 IT=86% (2) β-=100% β-=14% (2)	360 ns (13/2+) 2.85 m 3/2- Eex=2741.8 μ=-65736.2 (1.4 IT=1004 β-=1004
28 Ni 35	28 Ni 36	28 Ni 37	28 N i 38	28 N i 39	28 Ni 40
1.67 μs 5/2- 101.2 y 1/2- Eex=07.15 Δ=-65512.3 (0.5 IT=100% β-=100%	Stable 0+ Δ=-67098.5 (0.5) Abndnc=0.9255% (19)	69 μs 1/2- Eex=63.37 &=-65125.2 (0.6 IT=100% β-=100%	54.6 h 0+ Δ=-66006.3 (1.4) β-=100%	13.3 μs (9/2+) 21 s 1/2- Eex=1007.2 Δ=-63742.7 (2.9 IT=100% β-=100%	270 ns 0+ 29 s 0+ Eex=1770.0 d=-63463.8 (3.0 IT=100% β-=100%

Isotopes Harvesting at FRIB

Selected Examples ...

Nuclide	Primary User	Mass Slits +	Near Dump *	In Dump #
Mg-28	700 mCi/d	Not likely	20 mCi/d	7 mCi/d
Si-32	.063 mCi/d, 23 mCi/y	0.1 mCi/w	0.01 mCi/d	1 mCi/y
Ti-44	10 mCi//y	0.1 mCi/w	0.1 mCi/y	0.1 mCi/y
Cu-67	2000 mCi/d	100 mCi/d	100 mCi/d	100 mCi/d
Mo-99				1500 mCi/d

+ Collection at slits might be available 1 week per year

* The near dump rates are an approximate average of production from favorable beams on the beam list. This production should be available around 40 days/year

This assumes a ²³⁸U primary beam and would be available around 150 days/year. Higher yields would come from other primary beams, so the values could be higher.

What do we need to know about ⁶⁷Cu?

for production and dosimetry applications one needs to know absolute (per decay) emission probabilities

Need to know: I_{γ} (rel), Mult., MR (ICC) & $I_{\beta-,0}$

Huo Junde, Huang Xiaolong, J.K. Tuli Nuclear Data Sheets 106, 159 (2005)

ENSDF & TOI99 ⁶⁷Zn levels J^{π@} E_{level}[#] **T**^{1/2} **Comments** 0.0 5/2stable 93.311 5 1/2- 9.10 µs 7 T_{1/2}: from <u>1973Le18</u>. 0.0 61.83 h 3/2-Intensities: I(y+ce) per 100 184.577 6 3/2parent decays 67 29Cu₃₈ 393.530 7 3/2-%B-=100 22 0.797 116 116 $Q^-=561.7^{15}$ β⁻ Radiations Log ft 30,2 Iβ Eβ-Elevel I_{β} .[#] Log ft **Comments** 18 3/2-393.530 =5.8 **−**1.1 9:31/E 3/2-184.577 ⊨5.2 **⊳**57 (168.2) 393.530 ≈1.1 ≈5.8 av Eβ=51.0 25 1/2-93.311 **−6.0 ⊳**22 9.10 µs (377.1) 184.577 ≈57 ≈5.2 av Eβ=121 3 5/2-0.0 <mark>⊳20</mark> **=6.3** stable (468.4)93.311 ≈22 ≈6.0 av Eβ=154 *3* ${}^{67}_{30}$ Zn₃₇ av Eβ=189 *3* (561.7)0.0 ≈20 ≈6.3 **I**_β-: from <u>1953Ea11</u>.

Ly Normalization: Based on a g.s. β^{-} branching of $\approx 20\%$ (<u>1953Ea11</u>) and 10% E2 for the 184 γ corresponding to the $\delta = 0.34$ 4 derived from the ce data of <u>1966Fr12</u>.

	Eγ [@]	Elevel	Ι _γ <u>#@</u>	Mult. <u>&</u>	δ <u>&</u>	α	Comments
	91.266 5	184.577	7.0 1	M1+E2	+0.06 5	0.083 8	α (K)exp=0.066 10(<u>1969Li04</u>) α (K)=0.073 7; α (L)=0.0076 8
	93.311 <i>5</i>	93.311	16.1 2	E2		0.873	$\alpha(K) = 0.77 \ 8(1966Fr12)$ $\alpha(K) = 0.751; \alpha(L) = 0.0020$
very precise , BUT	184.577 <i>10</i>	184.577	48.7 <i>3</i>	M1+E2	0.34 4	0.0180 13	$\alpha(\mathbf{K}) = 0.751, \alpha(\mathbf{L}) = 0.0920$ $\alpha(\mathbf{K}) = 0.0156 \ 10(1966 \mathrm{Fr} 12)$ $\alpha(\mathbf{K}) = 0.0158 \ 11; \ \alpha(\mathbf{L}) = 0.00165 \ 12$
							δ: from α(K)exp+α(L1)exp=1.72×10-2 10(1966Fr12).
	208.951 <i>10</i> 300.219 <i>10</i>	393.530 393.530	0.115 <i>5</i> 0.797 <i>11</i>	M1+E2 M1+E2	-0.034 <i>21</i> +0.20 <i>8</i>	0.00913 6	α(K)=0.00804 6; α(L)=0.00082
	393.529 10	393.530	0.220 8				δ: -0.17 8 or -2.4 3 for M1+E2.

[#] For absolute intensity per 100 decays, multiply by 1.00. @From <u>1978Me10</u>.

VOLUME 91, NUMBER 3

The Radioactivity of Cu⁶⁷

HARRY T. EASTERDAY Radiation Laboratory, Department of Physics, University of California, Berkeley, California (Received March 4, 1953)

The β spectrum of Cu⁶⁷ is found to contain three groups with maximum energies and relative intensities of 577 kev, 20 percent; 484 kev, 35 percent; 395 kev, 45 percent. Conversion electrons from 92- and 182-kev transitions were observed. These results and the absence of the 296-kev γ ray indicate that the β transitions go to the ground and first two excited states of the known Zn⁶⁷ levels.

Transition e (kev)	energy	Relative intensity (percent)	ft values
Beta Gamma	577 484 395 92 182	20 35 45	6.26 (<i>l</i> -forbidden) 5.73 5.35

TABLE I. Beta and gamma rays of Cu⁶⁷.

no uncertainty – the quoted value is approximate!

Relative y-ray emission probabilities

PHYSICAL REVIEW C

VOLUME 17, NUMBER 5

MAY 1978

Multiparticle configurations in the odd-neutron nuclei ⁶¹Ni and ⁶⁷Zn populated by decay of ⁶¹Cu, ⁶⁷Cu, and ⁶⁷Ga[†]

R. A. Meyer, A. L. Prindle, and William A. Myers* Lawrence Livermore Laboratory, University of California, Livermore, California 94550

TABLE I. Energies and intensities of γ rays from decay of 67 Cu.

$\begin{array}{c} E_{\gamma} \ (\Delta E_{\gamma}) \\ (\text{keV}) \end{array}$	$I_{\gamma} (\Delta I_{\gamma})$ (γ rays per 100 decays) ^a
91,266(5)	7.0(1)
93.311(5)	16.1(2)
184.577(10)	48.7(3)
208.951(10)	0.115(5)
300.219(10)	0.797(11)
393.529(10)	0.220(8)

^a Based on 20% β^{-} feeding of the ground state (Ref. 20) and by using 12% E2 (Ref. 20) for the 184-keV transition.

Ground-state to Ground-state β - branch

ENSDF MIRD (NNDC) MIRD (med) NUDAT JEFF3.1 ENDF/B-VII.1

~20%
20%
20%
20 (2)%
20 (2)%
20 (2)%

Experimental details – sources

Review

Applied Radiation and Isotopes 70 (2012) 2377-2383

The production, separation, and use of ⁶⁷Cu for radioimmunotherapy: A review

Nicholas A. Smith^{a,*}, Delbert L. Bowers^a, David A. Ehst^b

^a Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA ^b Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA

⁶⁷Cu production: ⁶⁸Zn(γ,p)@ 60 MeV bremsstrahlung at Rensselaer Polytechnic Institute (RPI) LINAC; enriched ⁶⁸Zn target

chemical purification @ANL-CSE (N. Smith et al. ARI 70 (2012) 2392)

□ source preparation @ANL-PHY - several thin (~1µCi) open sources, as well as sealed sources for relative measurements

Experimental details – cont.

Two independent series of measurements:

- γ- and β-singles measurements using an analog (Canberra) DAQ - measure separately absolute γ and β-decay emission probabilities
- \square singles & β - γ coincidence measurements using a digital DAQ

High-resolution germanium detectors

- ✓ 2-cm² x 1 cm LEPS (FWHM=0.5 keV at 122 keV)
- ✓ 25% coaxial Ge (1.8 keV at 1332 keV)

Passivated Implanted Planar Silicon (PIPS) detector

- ✓ 500 µm thick (singles)
 - 1 mm thick (singles & coincidence)

Calibration – gammas

Calibration – betas

⁶⁷Cu results - singles

relative γ -ray intensities

consistent results between LEPS and HPGe
 very good agreement with R. Meyer et al. (LLNL)
 R. A. Meyer et al., Phys. Rev. C 17, 1822 (1978)

Experimental details - coincidences

¹⁴¹Ce – $\beta\gamma$ coincidences

⁶⁷Cu results - coincidences

⁶⁷Cu: measurements – cont.

PHYSICAL REVIEW C 92, 044330 (2015)

Precise absolute γ -ray and β^- -decay branching intensities in the decay of $^{67}_{29}$ Cu

J. Chen,^{1,*} F. G. Kondev,^{1,†} I. Ahmad,² M. P. Carpenter,² J. P. Greene,² R. V. F. Janssens,² S. Zhu,² D. Ehst,¹ V. Makarashvili,¹ D. Rotsch,¹ and N. A. Smith¹

I_{β-0}= **27.4 (5)% -** > **~20%: 37%** difference