

Power Exhaust – Walls – Materials for Tokamaks

Joint ICTP-IAEA College on Advanced Plasma Physics, Triest, Italy, 2016 Marco Wischmeier *Max-Planck-Institut für Plasmaphysik*

85748 Garching

Goal of magnetic confinement research

Neutrons leave plasma into power conversion system → will be used for net energy production

Goal of magnetic confinement research

He heats plasma → needs to be exhausted

Losses perpendicular to magnetic field

 Maximize pumping of He ash
 Provide sufficient pumping of hydrogen fuel
 Minimize damages to the wall (erosion, melting)

P_{heat} in centre

From JET

Distributed Recycling particles

From JET

Width of Scrape-Off Layer? What is the power flux?

T. Eich PRL (2011), T. Eich IAEA FEC 2012, A. Scarabosio PSI 2012

$$\lambda_q = 0.73 \cdot B_{tor}^{-0.78} \cdot q_{cyl}^{1.20} \cdot P_{SOL}^{0.10} \cdot R_{geo}^{0.02}$$
(Carbon divertor, attached conditions, inter ELM)

No dependence on machine size R

What is the power flux density in the SOL?

P_{heat}

23 MW

~ 38 MW

~ 100 MW

~ 600 MW

Good energy confinement -> large R ($P_{fus} \sim R^3 - see yesterday$)

A measure of the severity of the heat flux is

• P_{heat}/R

M. Kotschenreuter et al. NF 50 2010 K. Lackner Comm. PPCFusion 15 1994

Device	P _{heat} /R	q _∥ upstream		
JET	7	20 GW/m ²		
ASDEX Upgrade	14	35 GW/m ²		
ITER	20	50 GW/m ²		
DEMO	80-100	>300 GW/m ²		

What are the limitations imposed by wall materials?

lons accelerated to energies \sim Z x 3.5 x T_e in electrical field by sheath potential

Tritium retention

All tungsten plasma facing components in ASDEX Upgrade

ICTP Trieste College on Advanced Plasma Physics M. Wischmeier

μ

Water cooled

divertor

segment

Integrated approach: Combination of coolant, structural material of coolant pipe and armour material?

Reminder: main divertor characteristics

The ITER W divertor

Key outstanding design issue is what shaping to apply to front surface of monoblocks in HHF areas \rightarrow this talk

@2016, ITER Organization 22nd PSI Conference, Rome, Italy, 30 May – June 3 2016

3

Risk mitigation: Liquid metals as PFC

D. N. Ruzic et al. NF 2011

V. A. Evtikhin et al. PPCF 2002

H. W. Kugel et al. Fusion Eng. and Des. 2012 A. G. McLean et al. JNM 2013

How can we reduce the power load onto the divertor target plates to match the technological limit?

How can we reduce the power load onto the divertor target plates to match the technological limit?

1. GEOMETRY

Target inclination

Courtesy H. Meyer, MAST

Power load reduced by geometry

Device	P _{heat} /R	q _∥ upstream	q target (geometry)
JET	7	20 GW/m ²	20 MW/m ²
ASDEX Upgrade	14	35 GW/m ²	35 MW/m ²
ITER	20	50 GW/m ²	50 MW/m ²
DEMO	80-100	>300 GW/m ²	300 MW/m ²

Numerical simulations of DEMO device: SONIC

- With long leg Target at larger R:
- long-leg reference > Lower q_{\parallel} and larger A_{wet} (here compensated by lower f) N. Asakura et al. NF 2014
- Lower core radiation required
- Lower core dilution

N. Asakura et al. P1-103 at PSI2014

Risk mitigation: Advanced divertor configurations (I)

Risk mitigation (II): a (Super-) X divertor

Second X-point → low poloidal B

Caveat of high flux expansion and thus potentially too low impact angles on target plate \rightarrow but Super-X may reduce issue

<u>Super-X concept:</u> Valanju et al. Phys. Plasmas 16, 056110 (2009)

Advanced divertor configurations (III)

How can we reduce the power load onto the divertor target plates to match the technological limit?

2. Basic SOL Physics

Total plasma pressure is constant along magnetic field line $P_e + P_i + dynamic pressure = constant$

→ High recycling regime: low T_e (< 5eV), high n_e
 → Satisfactory for existing tokamaks
 → VERY HIGH PARTICLE FLUXES

Neglecting power loads on PFCs from radiation

→ Total power = $(8T + 15.8) 1.602 10^{-19} \Gamma[W]$; $T_e = T_i = T[eV]$

Power across sheath Surface recombination of D⁺ to D₂

What does < 5 -10 MW/m² imply for particle flux?

Neglecting power loads on PFCs from radiation

→ Total power = (8T + 15.8) 1.602 10⁻¹⁹ $\Gamma[W]$; $T_e = T_i = T[eV]$

Power across sheath Surface recombination of D⁺ to D₂

- ♣ For T_e < 2.5 eV → heat flux similar to power deposited by surface recombination processes</p>
- ✤ Power load via radiation to ~2 MW/m²

IPP

Neglecting power loads on PFCs from radiation

→ Total power = (8T + 15.8) 1.602 10⁻¹⁹ $\Gamma[W]$; $T_e = T_i = T[eV]$

Power across sheath Surface recombination of D⁺ to D₂

- ✤ For $T_e < 2.5 \text{ eV} \rightarrow$ heat flux similar to power deposited by surface recombination processes
- ✤ Power load via radiation of ~2 MW/m²
- $5 MW/m^2$ with T = 1.5 eV → Γ < 5e23 m⁻²s⁻¹

- Target power flux < 5 MW/m² \rightarrow ~1GW/m² upstream
- For DEMO: > 95% of power need to be radiated + Ion flux to target reduced to $5 \ 10^{23} m^{-2} s^{-1}$
- For ITER (10 MW/m² target limit): ~60-80% of power needs to be radiated + Ion flux to target reduced to $\sim 10^{24}m^{-2}s^{-1}$

Can we achieve these 5MW/m² in existing tokamaks with high P/R?

Impurity seeding (I)

F. Reimold et al. DPG 2012

ASDEX Upgrade with all W PFCs

Impurity Seeding (II)

Highly Radiating Plasma (ASDEX Upgrade)

✤ P_{heat}= 23 MW

- ✤ P_{heat}/R=14 (world record)
- Seeding of Ar and N₂
- ✤ Reduction to <5MW/m²

A. Kallenbach et al. NF 2012

Power flux can be dropped to < 5MW/m² in existing devices with high P/R

How is the particle flux limited?

$$\begin{split} T_t &= \left[\frac{q_{\parallel}^2}{n_u^2} \left(\frac{7q_{\parallel}L_c}{2\kappa_{0e}} \right)^{-4/7} \frac{2m_i}{\gamma^2 e^2} \frac{\left(1 - f_{pow}\right)^2}{\left(1 - f_{mom}\right)^2 \left(1 - f_{conv}\right)^{4/7}} \right. \\ n_t &= \left[\frac{n_u^3}{q_{\parallel}^2} \left(\frac{7q_{\parallel}L_c}{2\kappa_{0e}} \right)^{6/7} \frac{\gamma^2 e^3}{4m_i} \frac{\left(1 - f_{mom}\right)^3 \left(1 - f_{conv}\right)^{6/7}}{\left(1 - f_{pow}\right)^2} \right. \\ \mathsf{UX} \quad \Gamma_t &= \left[\frac{n_u^2}{q_{\parallel}} \left(\frac{7q_{\parallel}L_c}{2\kappa_{0e}} \right)^{4/7} \frac{\gamma e^2}{2m_i} \frac{\left(1 - f_{mom}\right)^2 \left(1 - f_{conv}\right)^{4/7}}{\left(1 - f_{pow}\right)} \right] \end{split}$$

Particle flux

 f_{pow} : power loss factor (0 − 1) → What is the maximum value? f_{conv} : 0=no convection; 1= only convection → What is the interplay? f_{mom} : momentum loss factor (0 − 1) → What is the maximum?

- Value of the loss factors and what interdependence?
- System codes will require scaling laws to define operational regime of DEMO type device

Prerequisite: Loss of plasma pressure

a) Radiation in the edge of the plasma core
→ Reduction of upstream plasma pressure
→ Reduced recycling

At low Te large Complexity of volumetric and surface processes

Reaction				
$H + e \to H^+ + 2e$				
$H + H^+ \rightarrow H^+ + H$				
$H_2 + e \to H + H + e$				
$H_2 + e \to H_2^+ + 2e$				
$H_2 + e \to H + H^+ + 2e$				
$H^+ + H_2 \rightarrow H^+ + H_2$				
$H^+ + H_2 \rightarrow H + H_2^+$				
$H_2^+ + e \to H + H^+ + e$				
$H_2^+ + e \to 2H^+ + e$				
$H_2^+ + e \to 2H + e$				
$\boxed{H^+ + \text{electrons}(s) \rightarrow H + h\nu \text{ or electrons}}$				
$C + e \to C^+ + 2e$				
$H^+ + C \to C^+ + H$				

+ seeded processes for impurities...

+ surface interaction physics (reflection, recycling)

Molecular assisted recombination	MAR	$D_2(v) + D^+ \rightarrow D_2^+ + D$	$D_2^+ + e \rightarrow D + D$
Molecular assisted dissociation	MAD	$D_2(v) + D^+ \rightarrow D_2^+ + D$	$D_2^+ + e \rightarrow D + D^+ + e$
Molecular assisted ionization	MAI	$D_2(v) + D^+ \rightarrow D_2^+ + D$	$D_2^+ + e \to D^+ + D^+ + 2e$

b) Pressure loss along field line

- perpendicular transport (independent of T_e)
- ✤ CX reaction losses (T_e<5eV)</p>

Prerequisite: Loss of plasma pressure on a field line

- b) Pressure loss along field line
 - perpendicular transport (independent of T_e)
 - CX reaction losses (T_e<5eV)</p>

Density ramp experiments in ASDEX Upgrade

- Asymmetry of particle fluxes
- Integral 'roll over' at similar time/density for inner and outer

How to extrapolate from exiting devices to future tokamaks?

...but requires well established understanding of existing devices first..

Role of drift terms in simulations for JET

L-mode experiments with semi-horizontal configuration at low density

Perpendicular SOL transport: Intermittent transport and main chamber wall interaction

Normalized L-mode SOL density profiles

D. Carralero et al. I-16 at PSI14

Effective collisionality in divertor determines filamentary perpendicular transport in midplane

See also:

M. Kocan et al. P3-093 at PSI14 T. Lunt et al. O-23 at PSI14 K. Schmid et al. I-6 at PSI14

B. LaBombard et al. PoP 2001, J. R. Myra et al. PoP 2006

Modeling ASDEX Upgrade and the high field side high density

Modeling ASDEX Upgrade and the high field side high density

Impact of drifts and transport

Drifts change the balance...

- ∇B -drift amplifies density in-out asymetry
- abla B -drift leads to add. perpendicular fluxes [Chankin JNM 1997]
- ExB-drift changes power sharing of divertors
- ExB-drift redistributes particles from outer to inner divertor via PFR [Aho-Mantila EPS (2014)] [Aho-Mantila IAEA (2013)]
- ExB-drift redistributes particles in the perpendicular direction into the farSOL [Reimold Thesis (2015)]
- → Increased recycling above X-point
- Neutral conductances moderate the effect of farSOL (neutral) density (numerically & physically)
- → Effect stand-alone not sufficient

Plasma Fueling of the Core

- Diffusive and advective drift transport of plasma from SOL into confined plasma:
 - → Amount of plasma fueling similar to effective neutral influx across separatrix
- Different fueling mechanisms affects different radial regions:
 - → Plasma fueling mainly determines separatrix density
 - \rightarrow Neutral fueling mainly determines core boundary density

- Power exhaust works in existing devices
- Identification of missing physics elements ongoing
- A method for ELM mitigation has been found and fits well with required conditions by power exhaust
- ♦ Challenge of power exhaust is increasingly demanding → will determine minimum size of fusion reactor