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Today...



Newcomb’s Theorem



In 1958, Newcomb showed that in a plasma that satisfies the ideal
Ohms law, two plasma elements connected by a magnetic field line at
a given time will remain connected by a field line for all subsequent
times. This occurs because the plasma moves with a transport velocity
that preserves the magnetic connections between plasma elements.
This is one of the most fundamental and relevant ideas in plasma
physics.



Proof: d/dt is the convective derivative

Ohm’s law ~E +~v× ~B = 0 implies

∂t~B = ∇× (~v× ~B) =
d~B
dt
− (~v · ∇)~B

Be d~l = ~x′ −~x the 3D vector connecting two infinitesimally close
fluid elements.

d
dt

d~l = ~v(~x′)−~v(~x) = ~v(~x + d~l)−~v(~x) = (d~l · ∇)~v

Then

d
dt

(d~l× ~B) = −(d~l× ~B)(∇ ·~v)−
[
(d~l× ~B)×∇

]
×~v

Wich means that if d~l× ~B = 0, it always remains null
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Pegoraro’s generalization



Ohm’s law
uµ =

dxµ

dτ
Fµνuν = 0

dFµν

dτ
= (∂µuα)Fνα − (∂νuα)Fµα

d/dτ = uµ∂µ

d
dτ

dlµ = dlα∂αuµ

where dlµ is the 4D displacement of a plasma fluid element.

d
dτ

(dlµFµν) = −(∂νuβ)dlαFαβ

This means that if dlµFµν = 0, it always remains null
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Relativistic Plasma
We extend the connection concept beyond



A plasma governed by generalized relativistic MHD equations. Effects such as
thermal-inertial effects, thermal electromotive effects, current inertia effects and Hall
effects.
Minkowski metric tensor ηµν = diag(−1, 1, 1, 1), and an electron-ion plasma with
density n, charge density q = ne, normalized four-velocity Uµ (UµUµ = −1) and
four-current density Jµ

continuity
∂µ(qUµ) = 0

generalized momentum equation

∂ν

(
hUµUν +

µh
q2 JµJν

)
= −∂µp + JνFµν ,

generalized Ohm’s law

∂ν

[
µh
q

(UµJν + JµUν)− µ∆µh
q2 JµJν

]
=

1
2
∂µΠ + qUνFµν −∆µJνFµν + qRµ .

h denotes the MHD enthalpy density, Π = p∆µ−∆p, p = p+ + p− and
∆p = p+ − p−, µ = m+m−/m2, m = m+ + m−, ∆µ = (m+ − m−)/m. The
frictional four-force density between the fluids is

Rµ = −η [Jµ + Q(1 + Θ)Uµ] ,

where Θ is the thermal energy exchange rate from the negatively to the positively

charged fluid, η is the plasma resistivity, and Q = UµJµ.



As usual, Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor (Aµ

is the four-vector potential), which obeys Maxwell’s equations

∂νFµν = 4πJµ , ∂νF∗µν = 0 .

Of course, F∗µν = (1/2)εµναβFαβ is the dual of Fµν , and εµναβ

indicates the Levi-Civita symbol.



Ohm’s law

Σµ = UνMµν + Rµ ,

Uµ = Uµ − ∆µ

q
Jµ , Mµν = Fµν − µ

∆µ
Wµν ,

Wµν = Sµν −∆µΛµν = ∂µ
(

h
q
Uν

)
− ∂ν

(
h
q
Uµ

)
,

Sµν = ∂µ
(

h
q

Uν

)
− ∂ν

(
h
q

Uµ

)
,

Λµν = ∂µ
(

h
q2 Jν

)
− ∂ν

(
h
q2 Jµ

)
.

and Σµ = ∂µ
[
µhQ/q2 + µh/(q∆µ)

]
+ (µ/∆µ)χµ, with

χµ = Uν∂
ν

(
h
q

Uµ

)
+

∆µQ
q

∂µ
(

h
q

)
− ∆µ

2µq
∂µΠ .



Curl of the Ohm’s law

dMλφ

dτ
= ∂λUνMφν − ∂φUνMλν − µ

∆µ
Zλφ + ∂λRφ − ∂φRλ ,

with d/dτ = Uν∂ν , and

Zλφ = Zλφ
h + Zλφ

p + Zλφ
H + Zλφ

c ,

where

Zλφ
h = ∆µ

[
∂λ

(
Q
q

)
∂φ

(
h
q

)
− ∂φ

(
Q
q

)
∂λ

(
h
q

)]
,

Zλφ
p =

∂λq
q2 ∂φ

(
p +

∆µ

2µ
Π

)
− ∂φq

q2 ∂λ

(
p +

∆µ

2µ
Π

)
,

Zλφ
H = ∂λ

(
1
q

JνFφν

)
− ∂φ

(
1
q

JνFλν

)
,

Zλφ
c = −∂λ

[
µ

q
Jα∂α

(
h
q2 Jφ

)]
+ ∂φ

[
µ

q
Jα∂α

(
h
q2 Jλ

)]
.

Zλφ
h and Zλφ

p are due to the thermal-inertial and thermal electromotive effects. The

contributions coming from the Hall effect in the generalized Ohm’s law are instead

retained by the tensor Zλφ
H , while Zλφ

c appears owing to current inertia effects.



Displacement of a plasma element

Define a general displacement four-vector ∆xµ of a general element that is
transported by the general four-velocity

∆xµ

∆τ
= Uµ +

µ

∆µ
Dµ ,

where ∆τ is the variation of the proper time and Dµ is a four-vector field which
satisfies the equation

Mνφ∂λDν −Mνλ∂φDν = Zλφ .

The four-vector Dµ contains all the (inertial-thermal-current-Hall) information of
Zµν .
We introduce the event-separation four-vector dlµ = x′µ − xµ between two different
elements. Then (d/dτ)dlµ = U ′µ + (µ/∆µ)D′µ − Uµ − (µ/∆µ)Dµ =
Uµ(xα + dlα) + (µ/∆µ)Dµ(xα + dlα)− Uµ(xα)− (µ/∆µ)Dµ(xα). Therefore,
the four-vector dlµ fulfills

d
dτ

dlµ = dlα∂α

(
Uµ +

µ

∆µ
Dµ

)
.



Connections when resistivity is neglected!

Finally we find

d
dτ

(
dlλMλφ

)
= −

(
dlλMλν

)
∂φ
(
Uν +

µ

∆µ
Dν

)
.

This equation reveals the existence of generalized magnetofluid
connections that are preserved during the plasma dynamics. Indeed,
from this equation it follows that if dlλMλφ = 0 initially, then
d/dτ(dlλMλφ) = 0 for every time, and so dlλMλφ will remain null
at all times.
The “magnetofluid connection equation” all previous results for a
relativistic electron-ion MHD plasma with thermal-inertial, Hall,
thermal electromotive and current inertia effects

dlλMλφ = dlλFλφ − µ

∆µ
dlλWλφ ,



Awesome, right?



Thanks!
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