
ICTP-IAEA College on Plasma Physics, 2016

Some aspects of Vorticity fields in
Relativistic and Quantum Plasmas

Felipe A. Asenjo1

Universidad Adolfo Ibáñez,
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Today...

I We explore the concept of vorticity fields in quantum plasmas
I We introduce the concept of helicity in these plasmas



Motivation

Is there something similar to what we have been studying before?



Quantum plasma fluid



Fluidization of quantum systems

I Early Era - Madelung, Bohm, Takabayasi. They tried to
understand and interpret quantum mechanics in terms of familiar
classical concepts

I Content to devise appropriate fluid-like variables obeying the
“expected” fluid like equations of motion: Continuity - Force
balance etc.

I Quantum phenomena entered the latter through the so called
“quantum forces” proportional to powers of ~

I The macroscopic formulations (for studying collective motions
of quantum fluids) have invoked methodologies similar to those
employed in classical plasmas

I Both the fluid and kinetic theories have been constructed:
I simple quantum (Feix, Anderson, Haas, Kuzmenkov, etc.)
I spin quantum (Marklund, Brodin, Andreev, Kuzmenkov,

Zamanian, etc.)
I relativistic quantum plasmas (Mahajan, Asenjo, Shukla, Hakim,

Sivak, Mendonça, Biali, etc.)



I When the de Broglie wavelegth of the charged contituents of the
plasma is comparable to the dimensions of the system, the
quantum effects must be considered

λBn1/3 ∼ 1

λB =
~

mv
I Quantum effects play an important role in very dense scenarios,

as astrophysical ones (neutron stars, accretion disks) with strong
magnetic fields, nano-scale physics (applications to condense
matter), microplasmas and high-energy lasers.

I New effects in propagation modes, shock waves, solitons,
inestabilities, etc.



Schrödinger equation

The fluid approach for quantum plasmas start with the Schrödinger
equation

i~
∂ψ(α)

∂t
=

[
− ~2

2m

(
∇+

ie
~c

A
)2

− eφ

]
ψ(α)

with the subindex (α) representing the particle quantum state. Using
the Madelung decomposition

ψ(α) =
√

n(α) exp(iZ(α)/~)

where n(α) is identified with number density and Z(α) is the phase.
The velocity is defined as

v(α) =
1
m
∇Z(α) +

e
mc

A



We obtain the fluid equations

∂n(α)

∂t
+∇ · (n(α)v(α)) = 0

∂v(α)

∂t
+ (v(α) · ∇)v(α) =

e
m

(E + v(α) × B) +
~2

2m2∇

(
∇2√n(α)
√n(α)

)
The quantum correction term is called Bohm potential.

But this is a fluid description for one-particle

We have to define the total density and the total fluid velocity as

n =
∑
α

p(α)n(α), v = 〈v(α)〉 =
1
n

∑
α

p(α)n(α)v(α)

z(α) = v(α) − v, 〈z(α)〉 = 0

where p(α) is the probability associated to each state. This is called
ensemble average.
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We have to define the total density and the total fluid velocity as

n =
∑
α

p(α)n(α), v = 〈v(α)〉 =
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Fluid description for quantum plasma

∂n
∂t

+∇ · (nv) = 0

∂v
∂t

+ (v · ∇)v =
q
m

(E + v×B)− 1
mn
∇ ·Π +

~2

2m2

〈
∇
(
∇2√nα√

nα

)〉
where Πij = mn〈zi

(α)z
j
(α)〉 is the pressure tensor.

Usually is assumed

~2

2m2

〈
∇
(
∇2√nα√

nα

)〉
∼ ~2

2m2∇
(
∇2√n√

n

)



Spin quantum plasma fluid 2
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Pauli equation

i~
∂Ψ(α)

∂t
=

[
− ~2

2m

(
∇+

ie
~c

A
)2

− e~
2mc

B · σ − eφ

]
Ψ(α)

The spinor is decomposed in a similar form as a Madelung
decomposition 3

Ψ(α) =
√

n(α) exp(iZ(α)/~)ψ(α)

with a normalized two-spinor ψ(α).
The velocity and the spin density vector are defined as

v(α) =
1
m

(
∇Z(α) − i~ψ†(α)∇ψ(α)

)
+

e
mc

A

s(α) =
~
2
ψ†(α)σψ(α)

3Takabayasi, PTP 14, 283 (1955); Marklund & Brodin PRL 98, 025001 (2007).



And the fluid equations are

∂n(α)

∂t
+∇ · (n(α)v(α)) = 0

m
∂v(α)

∂t
+ m(v(α) · ∇)v(α) = e(E + v(α) × B) + es(α)k∇Bk

− 1
n(α)

∂k

(
n(α)∇s(α)j∂ks(α)j

)
+
~2

2
∇

(
∇2√n(α)
√n(α)

)

∂s(α)

∂t
+ (v(α) · ∇)s(α) =

e
m

s(α) × B +
1

mn(α)
s(α) × ∂k

(
n(α)∂ks(α)

)
But, again, these equations are for one-particle!



Plasma equations - momentum

emsemble average

n =
∑
α

p(α)n(α), v = 〈v(α)〉, s = 〈s(α)〉

z(α) = v(α) − v, w(α) = s(α) − s, 〈z(α)〉 = 〈w(α)〉 = 0

we obtain the continuity equation
∂n
∂t

+∇ · (nv) = 0

The equation for evolution for velocity

mn
(
∂

∂t
+ v · ∇

)
v = ne (E + v× B)−∇ ·Π + FQ

where Πij = mn〈zi
(α)z

j
(α)〉 is the pressure tensor, and

FQ = ensk∇Bk +
n~2

2

〈
∇

(
∇2√n(α)
√n(α)

)〉
−∂k

(
n∇sj∂ksj + n〈∇w(α)j〉∂ksj + n〈∇s(α)j∂kw(α)j〉

)



Plasma equations - spin

n
∂s
∂t

+ n(v · ∇)s =
en
m

s× B +∇ · K + ΩQ

where Kij = n〈zi
(α)w

j
(α)〉 is the thermal spin coupling tensor, and ΩQ

is a quantum correction

ΩQ =
1
m

s× ∂k (n∂ks) +
1
m

s× ∂k
(
n〈∂kw(α)〉

)
+

n
m

〈
1

n(α)
w(α) × ∂k

(
n(α)∂ks(α)

)〉



The Spin Quantum Plasma System

The macroscopic continuity, force balance and spin evoution
equations are (n as density, v as the fluid velocity and S as the spin
vector, µ = q~/2mc as the magnetic moment, and S · S = 1):

∂n
∂t

+∇ · (nv) = 0 (1)

m
(
∂

∂t
+ v · ∇

)
v = q

(
E +

v
c
× B

)
+ µSj∇B̂j + Ξ (2)(

∂

∂t
+ v · ∇

)
S =

2µ
~

(
S× B̂

)
(3)

Neglection of effects like the spin-spin and the thermal-spin
couplings.



The spin interact with the effective magnetic field

B̂ = B +
~c

2qn
∂i (n∂iS) , (4)

composed of the two parts; there is nonlinear spin-spin force.
The pressure gets contributions from

Ξ = −1
n
∇p +

~2

2m
∇
(
∇2√n√

n

)
+

~2

8m
∇ (∂jSi∂jSi) , (5)

the classical pressure p, the Bohm potential, and the effective spin
pressure.

I The dynamics of an ideal classical fluid (blue) is extended to
include the quantum/spin (red) effects.



Quantum force-destruction of the standard ideal vortex

Let us now revisit the force balance equation for a spin quantum
plasma in vortical language. For a barotropic fluid, the equations of
motion are

∂Pc

∂t
= v× Ωc +

~
2m

Sj∇B̂j +
c
q

Ξ̂ , (6)

with Ξ̂ = Ξ−∇(qφ+ mv2/2) and

Pc = A +
mc
q

v Ωc = ∇× Pc

And its curl

∂Ωc

∂t
= ∇× (v× Ωc) +

~
2m
∇Sj ×∇B̂j , (7)

Spin quantum forces “destroy” the canonical vortical structure for
Ωc!



vortex Dynamics - Helicity:

Ideal vortex dynamics insures conservation of field helicity.

For the ideal classical vortex dynamics, the conserved classical
generalized helicity takes the form [〈 〉 =

∫
d3x]

hc = 〈Ωc · Pc〉 (8)

Helicity conservation is a topological constraint and is the primary
determinant for the formation of non trivial self-organizing
equilibrium configurations in plasmas.

The spin forces act as a quantum source for classical helicity

dhc

dt
=

~
m

〈
ΩciSj∂

iB̂j
〉
, (9)

and it could cause transitions to a different helicity state.
Potential forces- Bohm potential etc-do not contribute to vorticity evolution.



Spinning Quantum fluid again

Let us go back to the dynamics of a spinning fluid:

∂Ωc

∂t
= ∇× (v× Ωc) +

~
2m
∇Sj ×∇B̂j , (10)

(
∂

∂t
+ v · ∇

)
S =

2µ
~

(
S× B̂

)
(11)

The spin field, in addition, satisfies S · S = 1.

Question: Does the system allow a grand generalized vorticity?

If so what would the spin vorticity look like and what may it mean?

One must manipulate (17) in some creative way.
The aim, clearly, is to eliminate the “force” term in Eq. (16).



Looking for Spin Vorticity:

If we were able to convert Eq.17 into the form,

∂Ωs

∂t
= ∇× (v× Ωs) +

~
2m
∇Sj ×∇B̂j , (12)

then
Ω− = Ωc − Ωs

would, indeed, obey the standard vortex dynamics

∂Ω−
∂t

= ∇× (v× Ω−) (13)

Is there such an Ωs?



Quantum Spin vorticity:

The spin vorticity (1, 2, 3 denote components of S)

Ωs = S1 (∇S2 ×∇S3) + S2 (∇S3 ×∇S1) + S3 (∇S1 ×∇S2) , (14)

The constraint S2
1 + S2

2 + S2
3 = 1 (⇒ S1∇S1 + S2∇S2 + S3∇S3 = 0) allows

an alternate simpler expression(and cyclical counterparts )

Ωs =
∇S1 ×∇S2

S3
(15)

In component form Ωs
i = 1

2ε
ijkεlmnSl∂jSm∂kSn.

Ωs is, indeed a vorticity, it is the curl of a vector field: Ωs=∇× Ps

Ps = −S3∇[arctan(S2/S1)]

.
The potential Ps is in the Clebsch form



The Potential and the final set

The potential Ps obeys

∂Ps

∂t
= v× Ωs +

q
mc

Sj∇B̂j , (16)

We have , by this time, created a whole plethora of equations. A possible
complete set independent set is(

∂

∂t
+ v · ∇

)
S =

2µ
~

(
S× B̂

)
(17)

∂Ω−

∂t
= ∇× (v× Ω−) (18)

∇× B =
4π
c

J + 4π∇×M +
1
c
∂E
∂t

(19)

with J as the current density, and M = µnS as the magnetization density.



The Conserved Helicity

We have a potential vector field P− = Pc − (~c/2q)Ps satisfying

∂P−
∂t

= v× Ω− +
c
q

Ξ̂ , (20)

One defines the Grand Generalized Helicities h− = 〈P− · Ω−〉 which
is a constant of motion

dh−
dt

= 0 . (21)

The existence of h− is quite an amazing result. We have found this
constant of motion that straddles the classical and quantum domains



More on Quantum Spin Vorticity

The spin vector lies on the surface of a unit sphere: S · S = 1. Allows a
parametric representation S3 = cos θ, S2 = sin θ cosφ, S1 = sin θ sinφ

The spin vorticity (Ps = −S3∇[arctan(S2/S1)] = − cos θ∇φ)

Ωs =
∇S1 ×∇S2

S3
= ∇× Ps = sin θ∇θ ×∇φ (22)

displays very interesting characteristics.

All components of S must be nonzero and inhomogeneous for a nonzero Ωs

The Clebsch form forces the Helicity density of the pure spin field to be zero

Ωs · Ps = 0 (23)

Spin vorticity, however, contributes in a fundamental way to the conserved
helicity h− = 〈P− · Ω−〉



Conserved Helicity- Some details

Let us spell out the conserved helicity

h− = 〈P− · Ω−〉 = 〈(Pc + Ps) · (Ωc + Ωs)〉 = 〈Pc · Ωc + 2Pc · Ωs〉 (24)

It is thus, through the cross term hcross = 〈Pc · Ωs〉 that the spin vorticity
affects the overall dynamics.

I Helicity is an invariant measure of the “complexity” of a vector
field-the connectedness or knottedness of the flow lines.

I The spin field , by itself, is simple (zero helicity)

I But the total relevant field- canonical plus spin-does , indeed, support
complexity and structure formation.



Applications

I Superconductor-like equilibrium spin plasma states; Mahajan &
Asenjo, Phys. Rev. Lett. 107, 195003 (2011)

I Electromagnetic instabilities due to spin; Braun, Asenjo &
Mahajan, Phys. Rev. Lett. 109, 175003 (2012)

I Relaxed states for spin neutron plasmas; Mahajan & Asenjo,
Phys. Lett. A 377, 1430 (2013)

I Effect of spin in radiation reaction, Mahajan, Asenjo &
Hazeltine, MNRAS 446, 4112 (2015)



Relativistic quantum plasma fluid4

4Mahajan & Asenjo, International Journal of Theoretical Physics 54 1435 (2015)



Hot Relativistic Perfect Fluid

Tµν =
n
w

f pµpν + Π ηµν , (25)

where pµ is the fluid kinematic momentum, Π is the pressure, f is the
enthalpy, n is the invariant number density, and w is a constant with
dimensions of mass.

∂µ(npµ) = 0 . (26)

pµeff ≡ Pµ = f pµ , (27)

Tµν = g PµPν + Π ηµν , (28)

∂µ(gPµ) = 0 . (29)

where
g =

n
fw



Quantization for the effective momentum

gPµPν =⇒ g
(

PµPν +
~
2i
∂µ

~
2i
∂ν ln g

)
. (30)

This prescription looks both similar to, and distinct from the
conventional prescription pµ = −i~∂µ invoked in particle quantum
mechanics.

Tµνq = g PµPν + Π ηµν − ~2

4
g∂µ∂ν ln g , (31)

Then, the equation of motion 0 = ∂µTµνq gives

0 =
1
g
∂νΠ + Pµ∂µPν − ~2

4
∂ν
(

1
2
∂µζ∂

µζ +�ζ

)
(32)

with
ζ = ln(n/f )



We are going Quantum

Pµ = ∂µS , (33)

Π = Π(g) (34)

When both these conditions are satisfied, the equation of motion may be integrated

d = Π̄ +
1
2

(∂µS)(∂µS) − ~2

4

(
1
2
∂µζ∂

µζ +�ζ

)
(35)

where d is an integration constant and Π̄(g) is determined by

Π̄ =

∫
d(ln g)

dΠ

dg
. (36)

In terms of S and ζ, the continuity equation reads 0 = ∂µ∂
µS + ∂µζ∂

µS

Ψ =

√
n
f

eiS/~, (37)

we are able to derive [
~2∂µ∂

µ − Π̄ + d
]

Ψ = 0, (38)

Ψ∗Ψ =
n
f

(39)



The Nonlinear Term

To get a feel for the nonlinear term, let us take a specific equation of
state

Π = agΓ −→ Π̄ =
aΓ

Γ− 1
gΓ−1 (40)

This choice converts the previous equation into[
~2∂µ∂

µ − λ(Ψ∗Ψ)Γ−1 + d
]

Ψ = 0, (41)

where λ = (a/wΓ−1)Γ/(Γ− 1) is a fluid specific constant.
For Γ = 2, corresponds to the highly investigated Ψ4 theories that
have been invoked as models for spontaneous symmetry breaking
(when the vacuum does not have the symmetries of the Lagrangian).
The choice d = −m2, leads to a nonlinear extension of the KG field,
but if d = µ2 > 0, λ > 0, the field develops a finite vacuum
expectation value.



Switching on the Electromagnetic Field

∂µTµν = q
n
w

Fµνpµ = qgFµνPµ (42)

Pµ + qAµ = ∂µS, (43)

One ends up deriving the equation of motion of the KG subjected to
an electromagnetic field,[

−(i~∂µ − qAµ)(i~∂µ − qAµ)− λΠ̄(Ψ∗Ψ) + d
]

Ψ = 0, (44)



Non relativistic Limit- Landau Ginzburg Model

i~
∂Ψ

∂t
=

[
− ~2

2µ

(
∂k − iq

~
Ak
)2

+ qφ+ λ|Ψ∗Ψ|(Γ−1)

]
Ψ, (45)

The nonlinear Schrödinger equation that for Γ = 2, is the
Super-electron of the Landau-Ginzburg model. Notice that we could
just as well derive (45) by directly working with the non relativistic
limit of the energy momentum tensor.



Even more have been done...



Now that’s all.
Thanks!
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