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Even though  at large scales, one-fluid MHD is a reasonable description, a two-fluid model brings new  
physics into play, with the corresponding spatial (and temporal) scales. 

For each species s we have (Goldston & Rutherford 1995): 

o        Mass conservation 

o        Equation of motion 

o        Momentum exchange rate 

These moving charges act  as sources for electric and magnetic fields: 

o        Charge density 

o        Electric current density 

In the incompressible limit: 

Small scales: multi-species plasmas
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Small scales: EIHMHD equations

The dimensionless version, for a length scale      , density       and Alfven speed0L 0n 00 4/ nmBv iA π=

We define the Hall parameter 

as well as the plasma beta                                       and the electric resistivity 

Adding these two equations yields: 

where  

and 
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In the equation for electrons (assuming incompressibility) 

we replace 

to obtain the following generalized induction equation (Andrés et al. 2014ab, PoP) 

Electron inertia is quantified by the dimensionless parameter 

Just as the Hall effect introduces the new spatial scale                      (the ion skin depth), electron inertia  

introduces the electron skin depth                 which satisfies
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Retaining electron inertia: EIHMHD equations
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Normal modes in EIHMHD 

If we linearize our equations around  an  equilibrium characterized by a uniform magnetic field, we obtain the  
following dispersion  relation: 

Asymptotically, at very large k, we have two branches 

while for very small  k, both branches simply become   
Alfven modes, i.e. 

Different approximations, just as one-fluid MHD, Hall-MHD and electron-inertia HMHD  can clearly be identified  
in this diagram.
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Ideal invariants in EIHMHD
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For each species s  in the incompressible  and  ideal limit 

Using  that                                                              and  

we can readily show  that  energy is an ideal invariant, where 

We also have a helicity per species which is conserved, where 
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The standard theoretical model for two-dimensional stationary  
reconnection is the so-called Sweet-Parker model (Parker 1958) 

It corresponds to a stationary solution of the MHD equations.  
The plasma inflow (from above and below) takes place over a  
wide region of linear size     and is much slower than the Alfven  
speed (i.e. Uin << VA ). 

The outflow occurs at a much thinner region (of linear size            )  
at speed Uout ~ VA . 

The efficiency of the reconnection process is measured by the so-called reconnection rate, which is the  
magnetic flux reconnected per unit time. 

The dimensionless reconnection rate is 

where                is the Lundquist number.  

Since for most astrophysical and space plasmas is S >> 1, the reconnection rate is exceedingly low. 

                         

First application: Magnetic reconnection

M = Uin

Uout

! S−1/2

S = ΔvA
η

δ << Δ

Δ



EIHMHD simulations

We perform simulations of  the EIHMHD equations in 2.5D geometry to study magnetic reconnection. We  
force an external field with a double hyperbolic tangent  profile to drive reconnection at two X points  
(Andres et al. 2014a, PoP).  

We also study the turbulent regime of the EIHMHD  description, to look for changes at the  electron  
skin-depth scale (Andres et al. 2014b, PoP).



EIHMHD reconnection
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Reconnected flux in EIHMHD

The total reconnected flux at the X-point is the magnetic flux through  the perpendicular surface that extends from  
the O-point to the X-point. 

We compare the total reconnected flux between  
a run that includes electron inertia and another  
one  that does not. 

Sd
!

The reconnection rate is the time  derivative of these  
two curves. 

The apparent  saturation  is just a spurious effect  
stemming from the dynamical destruction of the X-point.  



Reconnection rate in EIHMHD

For the 2D configuration and assuming incompressibility, we run several simulations  
with different values of the Hall parameter, which is the dimensionless ion inertial  
length. 

We compare the corresponding reconnected flux (above) and the reconnection rate  
(below) vs. time. 

The reconnection rate is Ez at the X-point. From the equation for electrons, under  
stationary conditions 

At electron scales 

from where we obtain  
the following estimate  
for the dimensionless  
reconnection rate



Energy cascade 
  - energy flux toward high k 
  - vortex breakdown 

Scale invariance  
   - energy flux in k: 
   - energy power spectrum: 

Therefore

k
uE k

k

2

≈

k

k
k
u
τ

ε
2

≈

.,1 2

const
u

ku k

k
k

k
k =≈≈

τ
ετ

inertial range

injection
dissipation

Second application: Turbulence
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 Turbulence in the Solar Wind

The solar wind is a stream of plasma released from the upper  
atmosphere of the Sun, which impacts and affects the planetary  
magnetospheres. 

Sahraoui et al. 2009 used magnetograms from the Cluster  
mission to derive power spectra of magnetic energy.

They combine low-cadence data from FGM (parallel and  
perpendicular components) with high-cadence from STAFF-SC  
(also parallel and perpendicular). 

At the largest scales, they obtain a K41  power spectrum ( k-1.62 ).  

As they go to smaller scales, they identify two breakups. An  
intermediate range with a power law k-2.50, and an even  
steeper range at the smallest scales ( k-3.82 ).



Turbulence in EIHMHD simulations

These breakups are a manifestation of physical effects beyond MHD.  

We performed incompressible 3072x3072 simulations of the full  
two-fluid equations. We excited a ring of large-scale Fourier  
modes and let the system relax while the turbulent energy cascade  
takes place (Andres et al. 2014b, PoP). 

The magnetic energy power spectrum shows two breakups at the  
approximate locations of the proton (kp) and electron (ke) scales. 

The spectrum is K41 (i.e. k-5/3 ) at k << kp . 

At intermediate scales (kp << k << ke ) is k-7/3 . 

Beyond the electron scale ( ke << k ) a new range takes place k-11/3 . 

All these inertial ranges can be obtained using Kolmogorov-like  
arguments on the energy transfer rate given by



Turbulence in EIHMHD simulations



Conclusions

One-fluid MHD is a reasonable theoretical framework to describe the large-scale 
dynamics of plasmas. 

Two-fluid MHD introduces new physics (Hall, electron pressure, electron inertia) 
and also new spatial scales, such as the proton and electron skin-depths. We  
studied the role of these kinetic effects on two relevant phenomena for 
astrophysical plasmas: reconnection and turbulence. 

Reconnection:  
We present results from EIHMHD simulations to study dissipation-free magnetic 
reconnection. Our results show that it is indeed possible to have fast magnetic 
reconnection without energy dissipation (Andres et al. 2014a, PoP). The 
reconnection rate scales like the ion inertial scale and is independent from the 
electron mass. 

Turbulence: 
We also performed externally driven EIHMHD to show turbulent regimes. The 
magnetic energy spectrum displays breakups at the ion and electron inertial scales 
(Andres et al. 2014b, PoP). The spectral slopes are consistent with those arising 
from dimensional analysis.


