Chapter VI Rectifying and amplifying stresses

I) Linear medium: dipole conservation

- 1. Mean-stress theorem
- 2. Dipole conservation in linear media
- 3. Relating the macroscopic stress to macroscopic work
- 4. Relating the macroscopic force dipole to macroscopic work

II) Nonlinear (bucklable) medium: amplification

- 1. Radial force balance
- 2. Double-check: the linear case
- 3. Force amplification

III) Discussion

Reference: Ronceray & ML, Soft Matter **11**, 1597 (2015) Ronceray, Broedersz & ML, Proc. Natl. Acad. Sci. U.S.A. **113**, 2827 (2016)

Actomyosin is an active, contractile material

ordered

disordered

Lappalainen lab website ; Yumura J. Cell. Biol. 2001 ; Clark et al. Biophys. J. 2013 ; Barnhart et al. PLoS Biol. 2011

F-actin ordering accounts for striated muscle contractility

Contraction mechanism:

contractile unit ("sarcomere") 88 motor F-actin pointed end barbed end

passive cross-linker

Universal contractility paradigm? Myosin generates contractile forces, which the actin scaffold transmits over long distances.

Myosin motors have no intrinsic propensity for contraction

Why is disordered actomyosin contractile rather than extensile?

Linear networks cannot favor contraction over extension

 $\Sigma = 0$ even in strange geometries

 $\langle \Sigma \rangle = 0$ even in disordered materials

 $\Sigma \neq 0$ in the presence of nonlinear elasticity

Ronceray & ML Soft Matter 2015

We consider a network with filaments susceptible to buckling

We consider a network with filaments susceptible to buckling

Stress amplification is governed by an emergent buckling length scale

3D disordered network

Large-scale buckling generates large stress amplification

Experiments support all predicted amplification regimes

Ronceray, Broedersz, ML Proc. Natl. Acad. Sci. U.S.A. 2016