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As is well-known, (topological) string theory is defined by a 
formal, divergent genus expansion

Question: is there a well-defined, computable function of the 
moduli t and the string coupling constant which has this 

genus expansion as an asymptotic expansion?

Fg(t) ∼ (2g)!

This is the problem of formulating (topological) string theory 
non-perturbatively.

FTS(t, gs) =
∞�

g=0

Fg(t)g
2g−2
s



Since the expression “non-perturbative topological string” 
has been much (ab)used in recent years, it is useful to go 

back to basics, i.e. to Quantum Mechanics
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Standard perturbation theory gives a formal, divergent 
series for the ground state energy
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The second theorem says that this function has an asymptotic 
expansion which agrees with the series obtained in 

perturbation theory. 

The non-perturbative completion of this perturbative series 
is given by the spectral theory of Schrödinger operators on 

the Hilbert space          , and relies on two theorems.L2(R)
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The first theorem says that the operator          is compact 
for all positive g, so we have a discrete, well-defined 

spectrum, and the ground state energy          is a well-
defined function of g.



Note that this function is effectively calculable, by using for 
example numerical diagonalization

E0(1) = 0.8037706512...



A more complicated example of non-perturbative 
completion: AdS/CFT.  Now there are two parameters

Fgauge(N, gs) ∼
∞�

g=0

Fg(λ)g
2g−2
s

gauge theory 
free energy

genus expansion 
in superstring theory

’t Hooft 
parameter

Note that N is a positive integer in the non-perturbative 
definition, while it is a real, continuous variable in superstring 
theory: the non-perturbative definition seems to cover less 

than the perturbative series! More on this later. 

AdS radiusλ = Ngs ∝ (L/�s)
4



A non-perturbative definition of a formal perturbative 
series is a well-defined function, computable of the 

relevant parameters (at least in some range), and such 
that its asymptotic expansion is given by the original 

perturbative series, and nothing else  

In the case of topological strings on toric CYs, previous 
“non-perturbative definitions” in the literature either do 

not satisfy this criterium, or apply only to particular 
geometries, or both

The definition of non-perturbative definition



Topological strings on toric Calabi-Yau’s

The simplest yet non-trivial CY threefolds are toric CYs, which 
are noncompact. They can be described by Newton polygons. 

Their mirror manifolds reduce to algebraic curves

    Example: the 
canonical bundle over 

“local      ”

WX(ex, ey) = 0

given by the Newton polynomial of the polygon

WX(ex, ey) =

inner point of the 
polygon

P2

(1, 0)

(0, 1)

(−1,−1)

P2

ex + ey + e−x−y + κ = 0



The topological string free energies at genus g encode the 
Gromov-Witten invariants of these threefolds:

The free energies can be defined in different “frames”, similar 
to the duality frames in Seiberg-Witten theory. These frames 

are related by symplectic transformations, and implemented by  
formal integral transforms [Aganagic-Bouchard-Klemm]. They contain 

the same perturbative information. The GW invariants 
correspond to the so-called large radius (LR) or “electric 

frame”.   

FLR
g (t) =

�

d≥1

Ng,d e
−dt



In this talk I will be mostly interested in the conifold, or 
“magnetic” frame, where the free energies look like

vanishing period at 
the conifold point

Fg(λ) =
B2g

2g(2g − 2)
λ2−2g +

�

n≥1

Fg,nλ
n

They lead to a formal, divergent genus expansion

FTS(λ, gs) =
�

g≥0

Fg(λ)g
2g−2
s

Thanks to the work of Albrecht Klemm and collaborators, it is 
possible to calculate the free energies to very high genus (we 

did it up to g=114). 



Operators from mirror curves

In order to find the “dual” quantum systems to topological 
string theories, it was first proposed in [ADKMV]  that mirror curves 

can be “quantized” by promoting x, y to canonically conjugate 
Heisenberg operators

WX(ex, ey) → OX

[x, y] = i�

For simplicity, we will focus on mirror curves of genus one. 
Weyl quantization of the Newton polynomial produces a self-

adjoint operator on                        

� ∈ R>0

L2(R)

O = ex + ey + e−x−ylocal      P2



The operator                           ρX = O
−1
X

is positive definite and of trace class

Theorem 
[Grassi-Hatsuda-M.M., 

Kashaev-M.M.,                
Laptev-Schimmer-Takhtajan]

on                          L2(R)

e−En , n = 0, 1, · · ·discrete spectrum!

similar to confining potentials in Schrödinger theory 

n En

0 2.56264206862381937
1 3.91821318829983977
2 4.91178982376733606
3 5.73573703542155946
4 6.45535922844299896

� = 2π

local      P2



Spectral theory

The spectral information of this operator can be collected in 
various ways.  We have the spectral traces 

and the Fredholm determinant

“fermionic” 
spectral traces

ΞX(κ) = det(1 + κρX) = exp

� ∞�

�=1

(−1)�

�
Z�κ

�

�

= 1 +
∞�

N=1

ZX(N, �)κN

Z� = Tr ρ�X =
�

n≥0

e−�En , � = 1, 2, · · ·



             are well-defined due to the trace class 
property of      , and they can be computed from first 
principles in the QM model. They are combinations of 

the standard spectral traces. For example,

ZX(N, �)

ρXThe integral kernel of the operator       can be written 
explicitly, for many geometries, in terms of Faddeev’s 
quantum dilogarithm [Kashaev-M.M.]. This leads to analytic 

computations of the fermionic spectral traces in many cases - a
rare luxury in Quantum Mechanics!

ZX(1, �) =
�

R
ρX(x, x)dx

ρX



The quantum theory is particularly simple when            , and 
more generally when              

� =
r

s
π,

r

s
∈ Q>0

� = 2π

Some sample values for local       [Kashaev-M.M., Okuyama-Zakany]        

Z(2, 4π) =
5

324
− 1

12
√
3π

P2

Z(1, 2π) =
1

9



A non-perturbative definition

We now claim that

gs =
1

� λ =
N

�
’t Hooft parameter

Does this agree with our requirements? We have just seen 
that the fermionic spectral trace is well-defined when N is a 

positive integer and     positive and real    �

gives a non-perturbative definition of the topological string free 
energy in the conifold frame, with the dictionary

FX(N, �) = logZX(N, �)



N → ∞
� → ∞

N

� = λ fixed

We conjecture that the asymptotic expansion of                 in 
this regime is precisely the genus expansion of the topological 

string, and nothing else

The asymptotic regime is the standard ’t Hooft limit

FX(N, �) = logZX(N, �) ∼
�

g≥0

Fg(λ)�2−2g

This conjecture has been checked in massive detail. I will give 
additional evidence for it in this talk.  

FX(N, �)



We now address the issue of the discreteness of N. Clearly, 
not all values of the topological string parameters can be 

covered if N is just a positive integer. 

However, we have a stronger conjecture which gives an exact 
formula for     ZX(N, �)

ZX(N, �) = 1

2πi

�

C
eJX(µ,�)−Nµdµ

calculable from BPS 
invariants of X

If this conjecture is true (and it has been checked to amazing 
precision) the fermionic spectral trace, which was defined for 

positive, integer N, can be extended to an entire function on the 
complex N plane [Codesido-Grassi-M.M.]



Borel resummation

 There is a traditional way to produce well-defined quantities 
from factorially divergent series: Borel resummation

ϕ(g) =
�

n≥0

ang
n �ϕ(ζ) =

�

n≥0

an
n!

ζn

s(φ)(z) =

� ∞

0
e−ζ �ϕ(zζ)dζ

Borel transform

Laplace transform
asymptotics

Borel resummation



When this procedure makes sense, we say that the series is 
Borel summable. This requires that the Borel transform has no 

singularities along the positive real axis.

analytic 
structure of 

�ϕ(ζ)

learn more here!

In practice, one can verify the absence of 
singularities and perform the resummation by 

using numerical techniques



Suppose that we are given a non-perturbative quantity in 
quantum theory, as well as its perturbative, asymptotic series. 

Can we reconstruct the non-perturbative object from the 
series?

When the perturbative series is Borel summable, its Borel 
resummation might agree with the original quantity. This is 

what famously happens in the quartic oscillator

ϕ(g) =
1

2
+

3

4
g − 21

8
g2 + · · ·

Borel summable

E0(g) = s(ϕ)(g)

[Graffi-Grecchi-Simon]



In all these cases, one needs to the very least additional 
information, on top of the perturbative series: 

non-perturbative effects!

In other examples, the series is still Borel summable, but its 
Borel resummation does not agree with the non-perturbative 

definition [Balian-Parisi-Voros, Grassi-M.M.-Zakany] 

Finally, in many cases, the perturbative series is not even Borel 
summable, like in the double well potential



Trans-series
Perturbative series are obtained by expanding around a trivial 
saddle of the path integral. If one expands around a non-trivial 

saddle or instanton, one finds a trans-series

instanton
action

Trans-series are made out of formal, asymptotic series. They 
can be resummed with Borel-Ecalle resummation, which takes 

into account possible singularities on the positive real axis. 
One obtains in this way multi-parameter families of non-

perturbative completions.

�

n≥0

ang
n + Ce−A/g

�

n≥0

a(1)n gn+b1 + · · ·

parameter



“Semiclassical decoding conjecture”: non-perturbative 
functions in quantum theory can be written as the Borel-Ecalle 

resummation of a trans-series.

This seems to be true in many examples in Quantum 
Mechanics, and in some simple low-dimensional/topological/

supersymmetric systems. It is probably not true in Yang-
Mills theory (in infinite volume). 

We can now ask again whether one can reconstruct a non-
perturbative quantity from its trans-series:



Let us then ask the following question:

Is the “semiclassical decoding conjecture” true for the 
non-perturbative definition I have just given for the 

topological string?

The first thing to do, in order to answer this question, is 
to study the Borel summability of the genus expansion, in 

the conifold frame

In the following, I will focus on local      . P2



It turns out that the perturbative genus expansion is Borel 
summable for almost all real and positive λ

�

�

�

�

�

�

�
�150 �100 �50 50 100 150

�14 Π2

�10 Π2

�6 Π2

�2 Π2

2 Π2

6 Π2

10 Π2

14 Π2

singularities in the 
Borel plane for

λ =
1

π

We can then do standard Borel resummation of the 
perturbative series and get numerical answers. 



For N=2 and              we obtain� = 4π

FBorel(N = 2, � = 4π) = −9.049 862 103 051 21 . . .

FP2(N = 2, � = 4π) = log

�
5

324
− 1

12
√
3π

�

= −9.049 862 102 738 02 . . .

Our non-perturbative definition gives

This is not the same number, so the perturbative series is Borel 
summable but its resummation does not agree with our non-
perturbative definition! Similar to the 1/N expansion of the 

ABJM matrix model [Grassi-M.M.-Zakany] 



Perturbative
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The numbers are however incredibly close, for many values of   

The difference is not visible to the naked eye!
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This is what we expect from our conjecture! The 
asymptotic 1/N expansion of                should give the 

genus expansion of  the topological string, so the difference 
between                and the Borel resummation should be 

exponentially small, i.e. a non-perturbative effect

Can we compute this effect explicitly? Can we decode our 
non-perturbative definition in terms of a trans-series of 

the form 

�

g≥0

g2g−2
s Fg(λ) + Ce−A/gs

�

g≥0

gg−1
s F (1)

g (λ) + · · · ?

1-instanton correction

FX(N, �)

FX(N, �)



In this way they can solve for the non-perturbative 
corrections in terms of perturbative topological string data. 
The instanton action turns out to be a period of the CY, in 
agreement with previous proposals [Balian-Parisi-Voros, Drukker-

M.M.-Putrov] 

A general framework to calculate trans-series of this form for 
the topological string has been proposed by [Couso-Santamaria et al.]. 

They promote the trans-series to a non-holomorphic object 
and they require it to satisfy the holomorphic anomaly 

equation of BCOV

We can now consider the Borel resummation of the trans-
series and compare it to our non-perturbative definition. We 

have included the one-instanton correction with a natural 
appropriate parameter C.



FP2(N = 2, � = 4π) = log

�
5

324
− 1

12
√
3π

�

= −9.049 862 102 738 02042 . . .

FBorel = −9.049 862 103 051 21 . . .

1-instanton correction

FBorel + CF (1)
Borel = −9.049 862 102 738 02 . . .

We get a remarkable agreement for a large range of values!

 This gives evidence that our non-perturbative completion 
can be “semiclassically decoded” in terms of the above 

trans-series



We have given a rigorous and concrete non-perturbative 
definition of topological string theory on toric CYs, in the 

spirit of large N dualities. 

Conclusions

We have shown that this definition can be decoded in terms 
of a natural trans-series coming from the holomorphic 

anomaly equation. In particular, it is exponentially close to the 
Borel-resummed perturbative series, as required by a bona 

fide completion. 

                    can be written as a matrix model [M.M.-Zakany]. 
Can we compute the trans-series directly in this context?      

ZX(N, �)



The main interest of our non-perturbative definition is that it 
links topological strings to spectral theory in a highly non-

trivial way (the TS/ST correspondence!), and it makes 
surprising predictions in both subjects

A particular case of this correspondence proved recently by 
[Bonelli-Grassi-Tanzini], see Grassi’s talk. General proof?

Of course, they might be other non-perturbative definitions. 
Since in many cases the theory is Borel summable, there is 

always the “trivial” definition by Borel resummation. 


