#### 6d strings and exceptional instantons

#### Seok Kim

(Seoul National University)

Geometric correspondence of gauge theories, ICTP Sep 15, 2016 Talk based on:

Hee-Cheol Kim, <u>SK</u>, Jaemo Park, "6d strings from new chiral gauge theories" 1608.03919.

Hee-Cheol Kim, Joonho Kim, <u>SK</u>, Jaemo Park, work in progress.

See also the following recent papers, which partly overlap with ours:

Shimizu, Tachikawa, "Anomaly of strings of 6d N=(1,0) theories" 1608.05894.

Del Zotto, Lockhart, "On exceptional instanton strings" 1609.00310.

#### 6d SCFTs

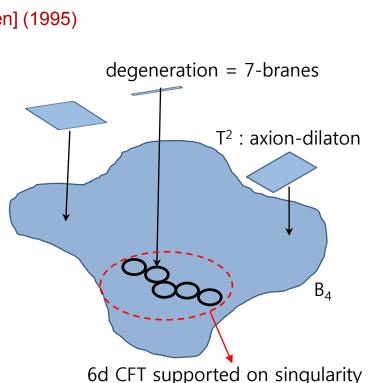
 From branes (e.g. IIA): NS5 (tensor), D6 (vectors), + D6, D8 (hypers). For instance, [Hanany, Zaffaroni] [Brunner, Karch] (1997)
 N D6's: SU(N)

- Type IIB on ADE singularities: N=(2,0) SCFTs [Witten] (1995)
- N=(1,0) SCFTs: F-theory on R<sup>5,1</sup> x (elliptic CY<sub>3</sub>)
   [Morrison, Vafa] [Witten] (1996)

• A "classification" by going to tensor branch

 $B_{\mu\nu}$  with  $H = dB = \star dB$ ,  $\Psi^A$ ,  $\Phi \longrightarrow VEV$ 

[Morrison, Taylor] (2012) [Heckman, Morrison, Vafa] (2013) [Heckman, Morrison, Rudelius, Vafa] (2015)



of collapsed 2-cycles

2N D6's: matters

NS5

NS5

## The "atoms"

- Building blocks of 6d SCFTs [Morrison,Vafa] [Witten] (1996) [Morrison,Taylor] (2012)
- SCFTs with lower dimensional tensor branch:

| n               | 1     | 2 | 3     | 4     | 5     | 6     | 7                       | 8     | 12    |
|-----------------|-------|---|-------|-------|-------|-------|-------------------------|-------|-------|
| gauge symmetry  | -     | - | SU(3) | SO(8) | $F_4$ | $E_6$ | $E_7$                   | $E_7$ | $E_8$ |
| global symmetry | $E_8$ | - | -     | -     | -     | -     | -                       | -     | -     |
| matters         | -     | - | -     | -     | -     | -     | $\frac{1}{2}$ <b>56</b> | -     | -     |

| base           | base 3,2            |                                 | 2, 3, 2                               |  |  |
|----------------|---------------------|---------------------------------|---------------------------------------|--|--|
| gauge symmetry | $G_2 \times SU(2)$  | $G_2 \times Sp(1) \times \{0\}$ | $SU(2) \times SO(7) \times SU(2)$     |  |  |
| matters        | $rac{1}{2}(7+1,2)$ | $rac{1}{2}(7+1,2)$             | $rac{1}{2}(2,8,1)+rac{1}{2}(1,8,2)$ |  |  |

- To construct more complicated 6d SCFTs, [Heckman,Morrison,Vafa] [H,M, Rudelius,V]
- make quivers of these atoms: glue two CFTs using n=1 SCFT, gauging subgroups of  $E_8$ .

SO(8) x SO(8)
$$E_6 x SU(3)$$
 $F_4 x G_2$  $E_7 x SU(2)$ 4 1 46 1 35 1 3 2 28 1 2 3 2

- "unHiggs" to bigger gauge groups w/ more hypermultiplet matters

## Self-dual strings

- Tensor branch: "self-dual strings" charged under 2-form
- D3-branes wrapping 2-cycles
- Like W-bosons/monopoles/dyons in 4d gauge theories in Coulomb branch
- Half-BPS in 6d (1,0) theories: 2d N=(0,4) CFTs on the strings
- To each 6d "atoms" correspond a family of 2d "atoms" for N=(0,4) SCFTs

- Effective description in tensor branch (when there is a gauge symmetry):
- 6d SYM + hypermultiplet matters, coupled to Abelian tensor multiplets

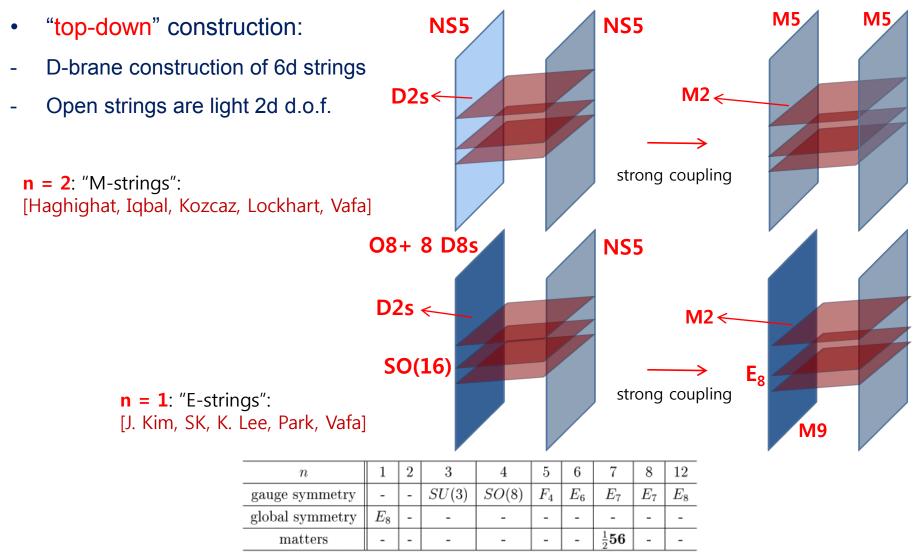
$$S_{\rm v+t}^{\rm bos} = \int \left[\frac{1}{2}d\Phi \wedge \star d\Phi + \frac{1}{2}H \wedge \star H\right] + \sqrt{c}\int \left[-\Phi {\rm tr}(F \wedge \star F) + B \wedge {\rm tr}(F \wedge F)\right]$$

• Self-dual strings = instanton string solitons in 6d SYM

 $H \equiv dB + \sqrt{c} \operatorname{tr} \left( A dA - \frac{2i}{3} A^3 \right)$ 

## Self-dual strings & gauge theories

• Some 2d CFTs come from UV gauge theories. (GLSM) [Witten] (1993)



• (p,q) 7-branes in generic F-theory setting (not just D7s): not just fundamental strings

### Bottom-up: soliton strings in 6d SYM

• For other SCFTs, we have Yang-Mills intuitions: self-dual strings = instanton strings

$$F_{\mu\nu} = \star_4 F_{\mu\nu} \qquad k \equiv \frac{1}{8\pi^2} \int \operatorname{tr} \left( F \wedge F \right) \in \mathbb{Z} \qquad \qquad S \leftarrow \int B \wedge \operatorname{tr}(F \wedge F)$$

- Classical gauge group (ABCD): ADHM construction suggests 2d gauge theories.
- Most gauge groups are exceptional.

| n               | 1     | 2 | 3     | 4     | 5     | 6     | 7                       | 8     | 12    |
|-----------------|-------|---|-------|-------|-------|-------|-------------------------|-------|-------|
| gauge symmetry  | -     | - | SU(3) | SO(8) | $F_4$ | $E_6$ | $E_7$                   | $E_7$ | $E_8$ |
| global symmetry | $E_8$ | - | -     | -     | -     | -     | -                       | -     | -     |
| matters         | -     | - | -     | -     | -     | -     | $\frac{1}{2}$ <b>56</b> | -     | -     |

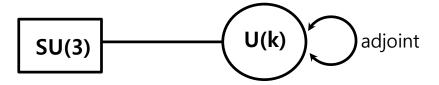
7

D2's

- Apparently simple cases: n=3,4 w/ SU(3), SO(8)
- n=4: [Haghighat, Klemm, Lockhart, Vafa]
   SO(8) ADHM construction
   Good QFT: e.g. Sp(k) anomaly-free
   Also constructed from top-down: D-brane realization
   4 D6's + O6<sup>-</sup>
   NS5 NS5

## Strings of SU(3) SCFT

- Naively, one may also try a guess w/ SU(3) ADHM ("bottom-up" approach)
- SU(3) ADHM for k instantons:



- U(k) anomaly doesn't cancel:

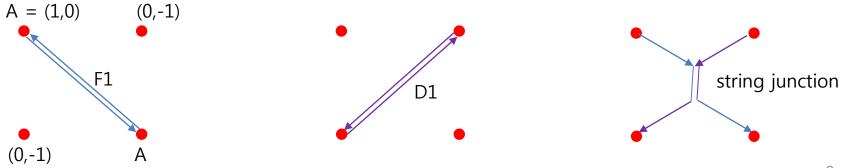
$$D_{\mathbf{k}} = 1$$

$$D_{\mathbf{adj}} = 2k$$

$$\sim 2 \cdot 3 \cdot 1 + 2 \cdot 2k - 2 \cdot 2k = 6 \neq 0$$

| fields                                               | U(k) | SU(3) | $SU(2)_F$ | $SU(2)_1$ | $SU(2)_2$ |
|------------------------------------------------------|------|-------|-----------|-----------|-----------|
| $\lambda_{\dot{\alpha}A-}$                           | adj  | 1     | 1         | 2         | 2         |
| $q_{\dot{\alpha}}(\rightarrow \psi_{A+})$            | k    | 3     | 1         | 2         | 1         |
| $a_{\alpha\dot{\beta}}(\rightarrow\chi_{\alpha A+})$ | adj  | 1     | 2         | 2         | 1         |

- This failure is natural. (Here, SU(3) doesn't come from open strings ending on 3 D-branes.)
- SU(3) is "nonperturbative" or "exceptional" [Grassi, Halverson, Shaneson]



## **Exceptional instanton strings**

• So including SU(3), the followings are realized "non-perturbatively."

| n               | 1     | 2 | 3     | 4     | 5     | 6     | 7                       | 8     | 12    |
|-----------------|-------|---|-------|-------|-------|-------|-------------------------|-------|-------|
| gauge symmetry  | -     | - | SU(3) | SO(8) | $F_4$ | $E_6$ | $E_7$                   | $E_7$ | $E_8$ |
| global symmetry | $E_8$ | - | -     | -     | -     | -     | -                       | -     | -     |
| matters         | -     | - | -     | -     | -     | -     | $\frac{1}{2}$ <b>56</b> | -     | -     |

- SU(3) SCFT is a building block of all the "exotic atoms"

| base           | 3,2                 | 3, 2, 2                         | 2, 3, 2                               |
|----------------|---------------------|---------------------------------|---------------------------------------|
| gauge symmetry | $G_2 \times SU(2)$  | $G_2 \times Sp(1) \times \{0\}$ | $SU(2) \times SO(7) \times SU(2)$     |
| matters        | $rac{1}{2}(7+1,2)$ | $rac{1}{2}(7+1,2)$             | $rac{1}{2}(2,8,1)+rac{1}{2}(1,8,2)$ |

- Related to  $G_2$  instantons, & instantons in "SO(7) + spinors" by Higgsings.
- Builds new SCFTs, "conformal matters" (later)



- Strategy for the SU(3) strings:
- Employ bottom-up approach.
- Cure the pathology of naïve SU(3) quiver.

## The cure for SU(3)

- Result: can't make N=(0,4) gauge theory. Can have one by sacrificing some SUSY in UV.
- Add the following N=(0,2) superfields to the anomalous SU(3) ADHM :

| fields                                               | U(k) | SU(3) | $SU(2)_F$ | $SU(2)_1$ | $SU(2)_2$ |
|------------------------------------------------------|------|-------|-----------|-----------|-----------|
| $\lambda_{\dot{\alpha}A-}$                           | adj  | 1     | 1         | 2         | 2         |
| $q_{\dot{\alpha}}(\rightarrow \psi_{A+})$            | k    | 3     | 1         | 2         | 1         |
| $a_{\alpha\dot{\beta}}(\rightarrow\chi_{\alpha A+})$ | adj  | 1     | 2         | 2         | 1         |

 $(\phi, \chi)$  : chiral multiplet in  $(\overline{\mathbf{k}}, \overline{\mathbf{3}})$ 

- $(b,\xi) + (\tilde{b},\tilde{\xi})$  : two chiral multiplet in (**anti**, 1)
  - $(\hat{\lambda}, \hat{G})$  : complex Fermi multiplet in  $(\mathbf{sym}, \mathbf{1})$
  - $(\check{\lambda},\check{G})$  : complex Fermi multiplet in  $(\mathbf{sym},\mathbf{1})$
  - $(\zeta, G_{\zeta})$  : complex Fermi multiplet in  $(\overline{\mathbf{k}}, \mathbf{1})$ .
  - $(\phi, \tilde{\chi})$  : chiral multiplet in  $(\mathbf{k}, \mathbf{1})$
  - $(\eta, G_{\eta})$  : complex Fermi multiplet in  $(\bar{\mathbf{k}}, \mathbf{1})$

- anomaly: SU(k) from ADHM ~ 
$$2 \cdot 3 \cdot 1 + 2 \cdot 2k - 2 \cdot 2k = 6 \neq 0$$
  
from others ~  $+3 \cdot 1 + 2(k-2) - (k+2) - (k+2) - 1 = -6$   
 $D_{sym} = k+2$   
 $D_{anti} = k-2$ 

$$U(1) + 3 \cdot 2 \cdot 1^2 \cdot k + 3 \cdot 1^2 \cdot k + 2 \cdot 2^2 \cdot \frac{k^2 - k}{2} - 2^2 \cdot \frac{k^2 + k}{2} - 2^2 \cdot \frac{k^2 + k}{2} - 1^2 \cdot k = 0$$

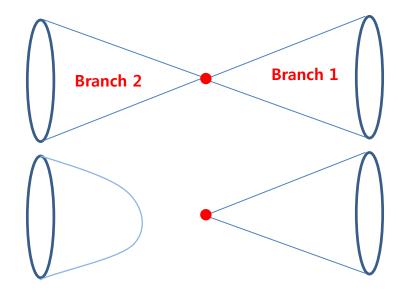
 Can turn on superpotentials to get the correct SU(3) instanton moduli space: but preserving only N=(0,1) SUSY [H.-C.Kim, SK, J. Park]

## The moduli space & UV completion

- Classical moduli space: vanishing  $V(\phi_{ADHM}, \phi_{others}) = V_1(\phi_{ADHM}) + V_2(\phi_{others}, \phi_{ADHM})$
- 1) branch 1: extra fields = 0. ADHM fields satisfy

$$D^{I} \equiv q_{\dot{\alpha}}(\tau^{I})^{\dot{\alpha}}_{\ \dot{\beta}}\bar{q}^{\dot{\beta}} + (\tau^{I})^{\dot{\alpha}}_{\ \dot{\beta}}[a_{\alpha\dot{\alpha}}, a^{\alpha\dot{\beta}}] = 0$$

- SU(3) instanton moduli space: hyper-Kahler quotient, N=(0,4) SUSY enhancement
- 1-loop correction doesn't spoil this zero potential condition
- 2) branch 2: We find another branch. (k=1)
- Classical: meets 1<sup>st</sup> branch at small instanton singularity
- Quantum: 1-loop correction only at 2<sup>nd</sup> branch conjecture: detached from the 1<sup>st</sup> branch (IR decoupling) [Melnikov, Quigley, Sethi, Stern] (2012)



• Non-linear sigma model in IR: small instanton singularity. Extra light d.o.f. at small instanton singularity. UV completion.  $\phi_{\text{extra}}$  are massless only at the tip

#### Other observables

- elliptic genus:  $H_{\pm} \equiv \frac{H \pm P}{2} \quad H_{-} \sim \{Q, \overline{Q}\}$   $Z_{k}(\tau, \epsilon_{1,2}, m_{a}) = \operatorname{Tr} \left[ (-1)^{F} e^{2\pi i \tau H_{+}} e^{2\pi i \bar{\tau} H_{-}} e^{2\pi i \epsilon_{1}(J_{1}+J_{R})} e^{2\pi i \epsilon_{2}(J_{2}+J_{R})} \cdot \prod_{a \in \text{flavor}} e^{2\pi i m_{a} F_{a}} \right]$
- Easy to compute w/ a UV gauge theory: contour integral [Benini,Eager,Hori,Tachikawa] (2013)
- Our U(k) gauge theory: [Flume, Poghossian] [Bruzzo, Fucito, Morales, Tanzini] (2002)

$$Z_{k}^{SU(3)} = (-1)^{\frac{k^{2}-k}{2}} \eta^{6k} \sum_{\vec{Y}; |\vec{Y}|=k} \prod_{i=1}^{3} \prod_{s \in Y_{i}} \frac{\theta_{1}(2u(s))\theta_{1}(2\epsilon_{+} - 2u(s))\theta_{1}(\epsilon_{+} + u(s))}{\prod_{j=1}^{3} \theta_{1}(E_{ij})\theta_{1}(E_{ij} - 2\epsilon_{+})\theta_{1}(\epsilon_{+} - u(s) - v_{j})} \times \prod_{i \leq j}^{3} \prod_{s_{i,j} \in Y_{i,j}; s_{i} < s_{j}} \frac{\theta_{1}(u(s_{i}) + u(s_{j}))\theta_{1}(2\epsilon_{+} - u(s_{i}) - u(s_{j}))}{\theta_{1}(\epsilon_{1,2} - u(s_{i}) - u(s_{j}))} \qquad E_{ij} = v_{i} - v_{j} - \epsilon_{1}h_{i}(s) + \epsilon_{2}(v_{j}(s) + 1) \times (s) = v_{i} - \epsilon_{+} - (m - 1)\epsilon_{1} - (m - 1)\epsilon_{2}$$

- 1d limit, replacing all  $\theta_1$  functions to sine functions, agrees with Nekrasov's SU(3) instanton partition function: We found an alternative "ADHM-like" formalism
- Novel results in 2d: For simplicity, let us consider single string k=1

$$Z_1^{SU(3)}(v,\epsilon_{1,2}) = -\frac{\eta^2}{\theta_1(\epsilon_{1,2})} \sum_{i=1}^3 \frac{\eta^4 \theta_1(4\epsilon_+ - 2v_i)\theta_1(v_i)}{\prod_{j(\neq i)} \theta_1(v_{ij})\theta_1(2\epsilon_+ - v_{ij})\theta_1(2\epsilon_+ + v_j)}$$

#### Tests

• k=1 (tests also done at k=2,3): computation from topological strings [Haghighat, Klemm, Lockart, Vafa]

$$\log Z(\tau, \epsilon_+, \epsilon_+, \mu) = \sum_{g \ge 0, n \ge 0} (\epsilon_1 \epsilon_2)^{g-1} (\epsilon_1 + \epsilon_2)^n F_{g,n}(\tau, \mu)$$

$$F_{0,0} = -\left[\frac{\theta_1(2v_1)\theta_1(v_1)}{\theta_1(v_{12})^2\theta_1(v_{13})^2\theta_1(v_2)\theta_1(v_3)} + (1,2,3\to2,3,1) + (1,2,3\to3,1,2)\right]$$
$$= e^{-\pi i \tau + 2\pi i v_{12} + 2\pi i v_{23}} \sum_{d_0,d_1,d_2=0}^{\infty} N_{d_0,d_1,d_2} \left(\frac{e^{2\pi i \tau}}{e^{2\pi i v_{12}}e^{2\pi i v_{23}}}\right)^{d_0} e^{2\pi d_1 v_{12}} e^{2\pi d_2 v_{23}}$$

0

| $d_1 \setminus d_2$ | 0  | 1  | 2  | 3  | 4  | 5  |
|---------------------|----|----|----|----|----|----|
| 0                   | 1  | 3  | 5  | 7  | 9  | 11 |
| 1                   | 3  | 4  | 8  | 12 | 16 | 20 |
| 2                   | 5  | 8  | 9  | 15 | 21 | 27 |
| 3                   | 7  | 12 | 15 | 16 | 24 | 32 |
| 4                   | 9  | 16 | 21 | 24 | 25 | 35 |
| 5                   | 11 | 20 | 27 | 32 | 35 | 36 |

| $d_1 \setminus d_2$ | 0  | 1   | 2   | 3   | 4   | 5   |
|---------------------|----|-----|-----|-----|-----|-----|
| 0                   | 3  | 4   | 8   | 12  | 16  | 20  |
| 1                   | 4  | 16  | 36  | 60  | 84  | 108 |
| 2                   | 8  | 36  | 56  | 96  | 144 | 192 |
| 3                   | 12 | 60  | 96  | 120 | 180 | 252 |
| 4                   | 16 | 84  | 144 | 180 | 208 | 288 |
| 5                   | 20 | 108 | 192 | 252 | 288 | 320 |

#### complete agreement

| Table 1 | 1: | $a^0$ |
|---------|----|-------|
|---------|----|-------|

| $d_1 \setminus d_2$ | 0  | 1   | 2   | 3    | 4    | 5    |
|---------------------|----|-----|-----|------|------|------|
| 0                   | 5  | 8   | 9   | 15   | 21   | 27   |
| 1                   | 8  | 36  | 56  | 96   | 144  | 192  |
| 2                   | 9  | 56  | 149 | 288  | 465  | 651  |
| 3                   | 15 | 96  | 288 | 456  | 735  | 1080 |
| 4                   | 21 | 144 | 465 | 735  | 954  | 1371 |
| 5                   | 27 | 192 | 651 | 1080 | 1371 | 1632 |

Table 2:  $q^1$ 

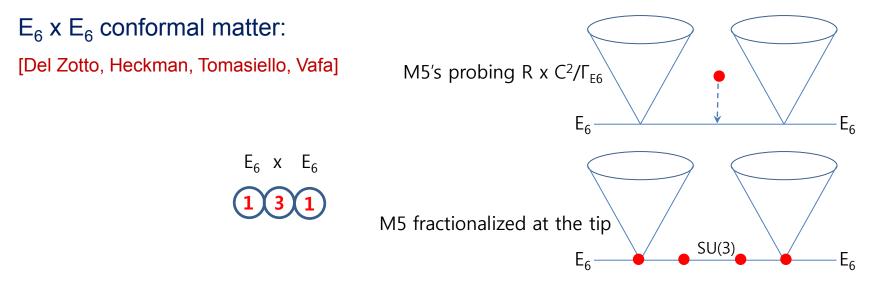
| $d_1 \setminus d_2$ | 0  | 1   | 2    | 3    | 4    | 5    |
|---------------------|----|-----|------|------|------|------|
| 0                   | 7  | 12  | 15   | 16   | 24   | 32   |
| 1                   | 12 | 60  | 96   | 120  | 180  | 252  |
| 2                   | 15 | 96  | 288  | 456  | 735  | 1080 |
| 3                   | 16 | 120 | 456  | 1012 | 1788 | 2796 |
| 4                   | 24 | 180 | 735  | 1788 | 2823 | 4356 |
| 5                   | 32 | 252 | 1080 | 2796 | 4356 | 5760 |

black numbers: computed from top. strings

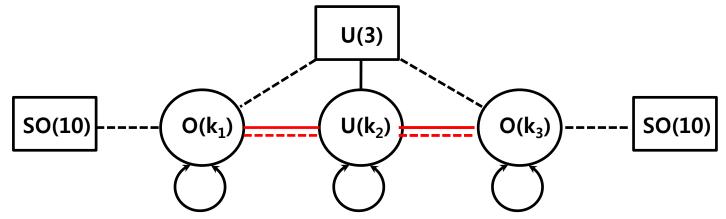
red: our prediction

# E<sub>6</sub> x E<sub>6</sub> conformal matter

• 2d quivers for strings w/ higher dim'l 6d tensor branches



• 3 types of string charges: connect 3 theories w/ bifundamental matters



- SO(10) x U(1) x SO(10) enhances to  $E_6 \times E_6$ : partly checked from elliptic genus

#### More tests: anomaly inflows from 6d

- 2d anomalies of global symmetries
- Computable from 6d gauge anomaly cancelation w/ 2d defects (anomaly inflow)
- Results from the inflow mechanism [H.-C. Kim, SK, J. Park] (see also [Shimizu, Tachikawa])

$$I_4^{\text{inflow}} = I_4^{(1)} + I_4^{(2)} = \Omega^{ij} k_i \left[ I_j + \frac{1}{2} k_j \chi(T_4) \right] \qquad \qquad I_4^{2d} = -I_4^{\text{inflow}}$$

- Agree with the anomalies calculated from our 2d gauge theories
- k instanton strings for G=SU(3): both calculations yield

$$I_4^{2d} = -\frac{3k}{4} \operatorname{Tr} F_G^2 - 3kc_2(R) - \frac{k}{4}p_1(T_6) - \frac{3k^2}{2}\chi_4(T_4)$$

-  $E_6 \times E_6$  conformal matter: both calculations yield

$$I_4^{2d} = k_1(k_2 + k_3)\chi_4(T_4) - k_1 \left(\frac{3}{4} \text{Tr}F_{SU(3)}^2 + 3c_2(R) + \frac{p_1(T_6)}{4} + \frac{3}{2}k_1\chi_4(T_4)\right) + k_2 \left(\frac{1}{4} \text{Tr}F_{E_6}^2 + \frac{1}{4} \text{Tr}F_{SU(3)}^2 - c_2(R) + \frac{p_1(T_6)}{4} - \frac{k_2}{2}\chi_4(T_4)\right) + k_3 \left(\frac{1}{4} \text{Tr}F_{E_6}^2 + \frac{1}{4} \text{Tr}F_{SU(3)}^2 - c_2(R) + \frac{p_1(T_6)}{4} - \frac{k_2}{2}\chi_4(T_4)\right) .$$

### UnHiggsing to exceptional instantons

- 6d Higgsings are reflected in 2d QFT as massive deformations
- Allowed unHiggsing sequences: all exceptional ~ "terminates after finite sequence" -

$$(SU(3)) \leftarrow (G_2, n_7 = 1) \leftarrow (SO(7), n_7 = 0, n_8 = 2) \leftarrow (SO(8), n_{8_v} = n_{8_s} = n_{8_c} = 1) \leftarrow \\ \leftarrow \begin{cases} (SO(N), n_N = N - 7, n_8 = \cdots)_{N=9, \cdots, 12} \\ (F_4, n_{26} = 2) \leftarrow (E_6, n_{27} = 3) \leftarrow (E_7, n_{\frac{1}{2}56} = 5) \leftarrow (E_8, n_{\text{inst}} = 9) \end{cases}$$

- G<sub>2</sub> & SO(7) instantons w/ 6d matters [Hee-Cheol Kim, Joonho Kim, SK, Jaemo Park]
- An (anomaly-free) quiver for SO(7) instantons: only SU(4)  $\subset$  SO(7) is manifest in UV

Standard SU(4) ADHMExtra chiral multiplet to make  
it a novel "SO(7) ADHM"
$$\phi_i$$
 :  $(\bar{\mathbf{k}}, \bar{4})$  $A_{\mu}, \lambda_0, \lambda$  :  $\mathcal{N} = (0, 4) U(k)$  vector multipletExtra chiral multiplet to make  
it a novel "SO(7) ADHM" $\phi_i$  :  $(\bar{\mathbf{k}}, \bar{4})$  $q_i, \tilde{q}^i$  :  $(\mathbf{k}, \bar{4}) + (\bar{\mathbf{k}}, 4)$  $\lambda$  :  $(\mathrm{anti}, 1)$  $\hat{\lambda}$  :  $(\mathrm{sym}, 1)$  $a, \tilde{a}$  :  $(\mathrm{adj}, 1)$  $\hat{\lambda}$  :  $(\mathrm{sym}, 1)$ 

Extra 2d field induced  $\Psi_i$  :  $(\mathbf{k}, \mathbf{1})$ by 6d hypers in 8  $\tilde{\Psi}_i$  :  $(\bar{\mathbf{k}}, \mathbf{1})$  (i = 1, 2)

 $8 
ightarrow 4 + ar{4}$ 

Can Higgs SO(7) to  $G_2$  with one 7. Further Higgsing to our alternative SU(3) ADHM.

## Applications [H.-C. Kim, J. Kim, SK, J. Park]

- **Application 1**: Reduce to 1d. ADHM-like QM for exceptional instantons
- $G_2$  instantons, & SO(7) w/ matters in spinor rep.
- 1d Witten indices: e.g. one G<sub>2</sub> instanton

$$\oint \frac{d\phi}{2\pi i} \frac{2\sinh\epsilon_{+} \cdot 2\sinh\phi \cdot 2\sinh(\epsilon_{+} - \phi) \cdot 2\sinh\frac{\epsilon_{+} + \phi}{2}}{2\sinh\frac{\epsilon_{+} \pm (u - v_{1,2,3})}{2} \cdot 2\sinh\frac{\epsilon_{+} - \phi - v_{1,2,3}}{2}} \cdot \frac{1}{2\sinh\frac{\epsilon_{+} \pm \phi}{2}}$$

$$\sum_{i=1}^{3} \frac{2\sinh(2\epsilon_{+} - v_{i}) \cdot 2\sinh\frac{v_{i}}{2}}{\prod_{j(\neq i)} 2\sinh\frac{v_{ij}}{2} \cdot 2\sinh\frac{2\epsilon_{+} - v_{ij}}{2} \cdot 2\sinh\frac{2\epsilon_{+} + v_{j}}{2}} \cdot \frac{1}{2\sinh\frac{v_{i}}{2} \cdot 2\sinh\frac{2\epsilon_{+} - v_{i}}{2}}$$

$$t^{\frac{3}{2}}(1 + t)(1 + t\gamma_{-}^{G_{2}}(v) + t^{2}) = 3\sum_{i=1}^{\infty} - c$$

One (k=1)  $G_2$  instanton partition function from 1d gauge theory

 $=\frac{t^{\frac{3}{2}}(1+t)(1+t\chi_{7}^{G_{2}}(v)+t^{2})}{\prod_{i< j}(1-te^{-v_{ij}})(1-te^{v_{ij}})} = t^{\frac{3}{2}}\sum_{n=0}^{\infty}\chi_{(0,n)}^{G_{2}}(v)t^{n}$  [Cremonesi, Ferlito, Hanany, Mekareeya] (2014)

- A strength of our approach: can add the effects of hypermultiplet matters in 7
- Application 2: 6d self-dual strings of "exotic atoms"

| base           | 3,2                 | 3, 2, 2                         | 2, 3, 2                               |
|----------------|---------------------|---------------------------------|---------------------------------------|
| gauge symmetry | $G_2 \times SU(2)$  | $G_2 \times Sp(1) \times \{0\}$ | $SU(2) \times SO(7) \times SU(2)$     |
| matters        | $rac{1}{2}(7+1,2)$ | $rac{1}{2}(7+1,2)$             | $rac{1}{2}(2,8,1)+rac{1}{2}(1,8,2)$ |

- They all contain the base '3' : either  $G_2$  with one 7 or SO(7) with two 8's
- With these atoms, one can study the strings of  $E_7 \times E_7$  conformal matter

Х

 $E_7$ 

 $E_7$ 

#### **Concluding remarks**

- 6d CFTs are hard. Even the 2d QFTs on solitons are hard for many 6d theories.
- We are getting solid clues on 2d gauge theories on self-dual strings:
- related to exceptional instantons' ADHM-like descriptions
- Using tensor branch observables for CFT physics at symmetric phase? (e.g. S<sup>5</sup> x S<sup>1</sup> index)
- Extension to other exceptional instantons...? (reduced UV symmetry, ...)
- For an exceptional group G<sub>r</sub> of rank r, we are seeking for ADHM-like UV gauge theories, which exhibit only SU(r+1) subgroup as its UV symmetry.
- $SU(3) \subset G_2$  (already discovered),  $SU(8) \subset E_7$ ,  $SU(9) \subset E_8$  (trying similar constructions).
- Cancelation of 2d gauge anomalies, 2d global anomalies, Witten index/elliptic genus...

- Our 2d CFTs = 4d Argyres-Douglas theories on  $S^2$ : see also [Del Zotto, Lockhart] (2016)
- More insight on the self-dual strings from AD theories? [Maruyoshi, Song] (2016)