PROBLEMS ON "COMBINATORIAL DEFORMATION THEORY: FROM COMBINATORICS TO MODELS AND BACK" LECTURED BY JEFFERY BROCK.

Throughout we use the following notations:

- $S = S_{q,n}$ denotes a compact surface with g genus and n boundary components.
- C(S) denotes the curve graph and $d_{C(S)}$ denotes the graph metric on C(S). If $x, y \in C(S)$ then i(x, y) denotes the minimum geometric intersection number between x and y up to isotopy.
- P(S) denotes the pants graph and $d_{P(S)}$ denotes the graph metric on P(S).
- T(S) denotes Teichumüller space and $T(S)_{wp}$ denotes Teichumüller space equipped with Weil–Petersson metric $d_{T(S)_{wp}}$.

< May/23/2016 >

- 1. Let a, b, c be positive real numbers. Construct $S_{0,3}$ such that the length of its three boundary components are a, b, and c.
- 2. Show C(S) is connected.
- 3. Let $x, y \in C(S)$. Show $d_{C(S)}(x, y) \leq 2 \cdot i(x, y) + 1$. Furthermore, show $d_{C(S)}(x, y) \leq 2 \cdot \log_2 i(x, y) + 2$.
- 4. Show C(S) has infinite diameter.

< May/24/2016 >

- 1. Discuss questions from $\langle May/23/2016 \rangle$.
- 2. Prove that there exists a constant L depending only on S so that for each X in T(S) there exists a pants decomposition $P \in P(S)$ so that $\max_{a \in P} l_X(a) < L$ where $l_X(a)$ is the distance of a measured by the hyperbolic metric on X.
- 3. Let $P \in P(S)$ and $V_k(P) = \{X \in T(S) | \max_{a \in P} l_X(a) < k\}$. Let L be the constant given by the above. Show the diameter of $V_L(P)$ is uniformly bounded in $T(S)_{wp}$ for all $P \in P(S)$.
- 4. Show $P(S_{1,1})$ is quasi-isometric to $T(S_{1,1})_{wp}$. Hint. Use the above two results.
- < May/26/2016 >
- 1. Discuss questions from $\langle May/23/2016 \rangle$ and $\langle May/24/2016 \rangle$.
- 2. Let M_{ϕ} be the mapping torus with monodromy ϕ . Show that if M_{ϕ} is hyperbolic then ϕ is pseudo-Anosov.
- 3. Let A be a multicurve in S and $P_A(S)$ be the subgraph of P(S) where the vertices are pants decompositions which contain A. Let $S = S_{2,0}$ and A be a multicurve such that |A| = 2. Is $P_A(S)$ geodesically convex in P(S)? What about when |A| = 1?
- 4. Let $S = S_{1,1}$ and ϕ be pseudo-Anosov. By using Brock-Bromberg inequality

$$Vol(M_{\phi}) \le 3\sqrt{\frac{\pi}{2}(2g-2+n)}||\phi||_{wp}$$

where $||\phi||_{wp} = \inf_{X \in T(S)} d_{T(S)_{wp}}(x, \phi(x))$, obtain a lower bound on Weil-Petersson length of the imaginary axis in terms of the volume of the ideal hyperbolic octahedron.