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I. Heat equation on a Riemannian manifold

Harnack inequalities and gradient estimates

Let u be a positive solution of the heat equation on a
Riemannian manifold (M, g):

∂

∂t
u = ∆u

(Gradient estimate) What can be said about

|∇u| or
|∇u|

u
?

(Harnack inequalities) For s ≤ t, how to compare

u(x , s) and u(y , t)?

Gradient estimates ≡ infinitesimal versions of Harnack inequalities;

Harnack inequalities ≡ integrated versions of gradient estimates
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Stationary solutions = harmonic functions

Let u be harmonic on some domain D in a Riemannian manifold:

∆u = 0

Cheng-Yau
Let M be complete and D ⊂ M be an open, relatively
compact domain. Let u be harmonic on D and strictly
positive. Then

|∇u|
u

(x) ≤ c(n)

[√
K +

1

r(x)

]
if Ric|D ≥ −K , K ≥ 0 (where r(x) = dist(x , ∂D) and
n = dim M).

For a probabilistic proof see Arnaudon, Driver, Th. (2007).

Anton Thalmaier Brownian motion, evolving geometries and entropy



By integrating Cheng-Yau along geodesic curves we obtain as
Corollary:

Elliptic Harnack inequality
Let u be harmonic on BR(x) ⊂ M where M is complete. Then

sup
BR/2(x)

u ≤ C (n,R,K ) inf
BR/2(x)

u
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Back to the parabolic case

Let M be a complete Riem. manifold and u be a solution of

∂

∂t
u = ∆u on M × R+

There is an exact formula for (∇u)(·, t)x in terms of Brownian
motion Xt starting from x :

Xt = Xt(x)

Recall: A Brownian motion Xt on M is characterized by the
property that for each f ∈ C∞(M),

d(f (Xt))−∆f (Xt) dt = 0 (mod differentials of loc mart.)
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For x ∈ M define a linear transformation

Qt : TxM → TxM

as solution to the pathwise ODE{
dQt = −Ric//t Qt dt

Q0 = idTxM

where
Ric//t := //−1t ◦ RicXt ◦ //t ∈ End(TxM)

and //t : TxM → TXt
M is parallel transport along Xt = Xt(x):

TxM TxM

TXt M TXt M

Ric//t

//t //−1
t

RicXt

By convention Ricx(v) = Ricx(v , ·)]g for v ∈ TxM.
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Let M be stochastically complete (BM has infinite lifetime). Let u
be the solution to the heat equation

∂

∂t
u = ∆u, u|t=0 = f ∈ Cb(M).

1 Writing u(x , t) = (Pt f )(x) we have

(Pt f )(x) = E[f (Xt(x)], f ∈ Cb(M).

Indeed: For fixed t > 0,

ns = (Pt−s f ) (Xs(x)), 0 ≤ s ≤ t,

is a martingale starting at Pt f (x); thus Pt f (x) = E[nt ].
2 In terms of the Aut(TxM)-valued process Qt from above,

(dPt f )x = E
[
Q∗t //

−1
t (df )Xt(x)

]
, f ∈ C∞c (M)

Indeed: It is enough to check that

Q∗s //
−1
s (dPt−s f )Xs(x)

, 0 ≤ s ≤ t,

is a martingale in T ∗x M, starting at (dPt f )x .
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Remark It is straight-forward to derive from the representation

(dPt f )x = E
[
Q∗t //

−1
t (df )Xt(x)

]
, f ∈ C∞c (M)

functional inequalities:

For instance, let K ∈ R. Assume that

Ric ≥ K .

Then
|∇Pt f | ≤ e−Kt Pt |∇f |, t ≥ 0.
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Theorem (Gradient formula)

Fixing x ∈ M, let D be a relatively compact neighbourhood of x
and let τD(x) be the first exit time of Xt(x) from D.

Let u be a bounded solution of the heat equation

∂

∂t
u = ∆u, u|t=0 = f ∈ C∞b (M).

Then, for each v ∈ TxM,

〈∇u(·, t)x , v〉 = −E
[

f (Xt(x))

∫ τ

0

〈
Qs

˙̀
s , dZs

〉]
where

τ = τD(x) ∧ t

Z is a Brownian motion in TxM

`s is any adapted process in TxM with absolutely continuous
paths such that (some ε > 0)

`0 = v , `τ = 0 and
(∫ τ

0
| ˙̀s |2 ds

)
1/2 ∈ L1+ε.
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II. Heat equation with respect to moving Riemannian
metrics

Study the heat equation under Ricci flow

Consider positive solutions u to the heat equation:
∂

∂t
u −∆g(t)u = 0

∂

∂t
gt = −2Ricg(t)

Later we shall deal with the conjugate heat equation
∂

∂t
u + ∆g(t)u − R(t, ·)u = 0

∂

∂t
gt = −2Ricg(t)
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Let M := M × I be space-time and let

(Xr ,T − r)

be Brownian motion on M based at (x ,T ). Thus time runs
backwards. By construction, Xr is a g−(r)-Brownian motion
with g−(r) := g(T − r).

Let (M, gt)t∈I be a smooth family of Riemannian metrics. We
consider the heat equation on (M, gt)t∈I :

∂

∂t
u = ∆gt u, u|t=s = f ∈ C (M).

If u is a bounded solution, then

u(Xr (x , 0),T − r), 0 ≤ r ≤ T − s,

is a martingale, and by taking expectations we get the formula

u(x ,T ) = E[u(XT−s(x , 0), s)] = E[f (X
(x ,0)
T−s ], 0 ≤ s ≤ T in I .
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There is also a stochastic representation of (∇u)(·,T )x .

For x ∈ M the linear transformation

Qt : TxM → TxM

needs to be redefined as solution to the pathwise ODE
dQt = −//−1t

(
Ricg −

1

2
∂tg

)
(Xt ,T−t)

//t Qt dt

Q0 = idTxM .

We see that Qt = id if and only if the metric evolves by
forward Ricci flow.

This explains why Riemannian manifolds evolving under Ricci
flow share many properties of Ricci flat static manifolds.

Anton Thalmaier Brownian motion, evolving geometries and entropy



III. Characterization of Ricci flow by functional inequalities

Recall first again the case of a static Riemannian manifold.

Let M be a complete and stochastically complete and K ∈ R.
Denote by

u(x , t) = (Pt f )(x)

the solution to the heat equation

∂

∂t
u = ∆u, u|t=0 = f ∈ C∞c (M).

Characterisation of “Ricci bounded below”
The following conditions are well-known to be equivalent:

Ric ≥ K ;
|∇Pt f | ≤ e−Kt Pt |∇f |;
|∇Pt f |2 ≤ e−2Kt Pt |∇f |2;

Pt(f 2 log f 2)− (Pt f
2) log(Pt f

2) ≤ 2(1−e−2Kt)
K Pt |∇f |2;

Pt(f 2)− (Pt f )2 ≤ 1−e−2Kt

K Pt |∇f |2.
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Now let (M, gt)t∈I be a smooth family of Riemannian metrics
and consider the heat equation on (M, gt)t∈I :

∂

∂t
u = ∆gt u, u|t=s = f ∈ Cb(M).

Denote

u(x ,T ) = (Ps,T f )(x), 0 ≤ s ≤ T in I .

Analogous to the case of a static manifold we can characterize
supersolutions to the Ricci flow by functional equations.
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Characterization of supersolutions to the Ricci flow

For a smooth family (M, g(t))t∈I of Riemannian metrics are
equivalent:

(M, g(t))t∈I is a supersolution to the Ricci flow, i.e.

∂

∂t
g(t) ≥ −2Ricg(t).

For each f ∈ C∞c (M) the heat flow on (M, g(t))t∈I satisfies

|∇Ps,T f |g(T ) ≤ Ps,T |∇f |g(s).

For each f ∈ C∞c (M) the heat flow on (M, g(t))t∈I satisfies

|∇Ps,T f |2g(T ) ≤ Ps,T |∇f |2g(s).
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Denote by P(x ,T )M the space of continuous paths

γt = (xt ,T − t)

based at (x ,T ) and P(x ,T ) the probability measure on
P(x ,T )M induced by the space-time BM (Xt ,T − t).

For σ = (0 ≤ σ1 < . . . < σk ≤ T ) consider the evaluation
map

eσ(γ) = (xσ1 , . . . , xσk ).

Let F : P(x ,T )M → R be a cylindrical function, i.e.

F = u ◦ eσ

where u : Mk → R is smooth and of compact support.

Consider the “parallel gradient”:

∇parF := e∗σ

(
k∑

i=1

//−1σi ∇
(i)
g(T−σi )u

)
.
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Characterization of solutions to the Ricci flow:

For a smooth family (M, g(t))t∈I of Riemannian metrics are
equivalent (R. Haslhofer and A. Naber):

(M, g(t))t∈I is a solution to the Ricci flow, i.e.

∂

∂t
g(t) = −2Ricg(t).

For each cylindrical function F : P(x ,T )M → R,

|∇xE(x ,T )F | ≤ E(x ,T )|∇parF |.

For each cylindrical function F : P(x ,T )M → R,

|∇xE(x ,T )F |2 ≤ E(x ,T )|∇parF |2.
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