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2014 $7B

Source: Navigant Research, 2015

Market Acceptance Cost Durability
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Objective

Introducing a cost assessment platform dedicated to
electrochemical materials
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* Technical performance targets -> application area 5 A
* Cost of production (lab to market) SIS
* Market assessment @ 1/: 28

Modeling approaches & BOOTHROYD DEWHURST, Inc.
* Materials simulation and modeling
* Production scale up of R&D (Techno-economic Cost Model-
TCM)
* Investment Methodology of Materials (IMM)

Technical Cost of Investment

Performance Production Potential
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Materials Design by
Modeling
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Design Challenges

Materials Modeling
Accelerate material | Improve critical | Design with optimized | Understand key
characterization reactions properties processes
Nanostructure
Materials
Energy Storage Catalysts Materials for Electronics and
and Conversion Membranes Harsh Environment Sensors

L

Photovoltaics FO REMOST OBJ ECT'VE

Batteries Capacitors . . . . .
Fuel Cells Maximum function at given cost and lifetime
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Polymer Electrolyte Fuel Cells

ELECTRIC CIRCUIT
(40% - 60% Efficiency)

Membrane (PEM) :3- £ Catalyst layers (CL)

Fuel H2
(Hydrg

oZ (Oxygen)

MEA

Heat (85°C)
Water or Air Cooled

Used Pust < SN Air + Water Vapor
Recirculates - |.

@ °
Flow Field | T Flow Field
Plate Plate
Gas Diffusion Gas Diffusion
Electrode (Anode) Electrode (Cathode)
Catalyst Catalyst

Proton Exchange Membrane Oxygen Reduction Reaction (ORR)

Ballard Power System

Hydrogen Oxidation Reaction (HOR)
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Macroscopic models
(CFD, FE)

Transport coefficients
Elastic constants

Coarse-Grained
Lattice-based
Simulations

Coarse-Grained
Particle-based
Simulations
(CGMD, DPD)

Effective interactions

Molecular
Simulations
(MD, M()

Force Fields

Experimental
Measurements
Characterization
(XRD, XPS)

Quantum

Chemical
Computations
(DFT, QM/MM)

(KMC, DMC, LB)

A System Size

> 0.01m
continuum

0.01-10 UM
Meso-scale

5-50 NmM
Molecular
scale

0.1-1 NM
Atomistic
Scale

Continuum equations

Classical mechanics

Quantum mechanics



Modeling Electrochemical Materials
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Catalyst layer of PEFC

Interfacial structure and processes

hydrophilicity
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Catalyst layer of PEFC

Interfacial structure and processes
lonomer = microstructure "=» ORR Effect of carbon support
: m ﬁd*L":?r ..53:'::':,: :ﬂt:{:: ." < P

H,0" PFSL
i | Estimated the distinct role of ionomer content on ionomer
@ coverage on Pt and C; Impacts on ORR activity

Dl ¢ Method: MD, CGMD, DFT, kinetics modeling
e Characterization: SANS, SAXS, CV, EIS

e Impact: vital for design of new generation CLs, pre-
competitive knowledge

0 1 | 1

T. Mashio et al., JPC-C 2010

Effect of ionomer on ORR (MD, DFT)
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lonomer (l/C ratio)
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Model
Development

Effect of solven
(implicit solvent, Pt)

Versatile CGMD
lonomer-free aggl.

Phase segregation
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Advanced CL design
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Model
Refinement

C = Pt/C
(explicit Pt)

CGMD = Physical model

= Experimental data

/
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Model
Validation

Composition-microstr.
(characterization)

Water/gas ads.
lonomer network

Water transport
Re-draw structural

picture
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Nafion-water structure

ionomer network water network

PLM number density map W number density map

42 ases
x (nm)

(nm*-3)

x (nm)

JPC 2007; JCP 2009; Electrocatalysis 2012
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PSD: role of Pt

— 1/C=0.9, PtC5050
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CL structural picture
redefined!

l «_ = sidechain orientation — T

I_onomel_' lonomer
(Side chain)  (hack bone)

Structure is sensitive to:
Pt loading, type of support (wetting properties), ionomer o

loading, dispersion medium
e Path to new FC materials (catalyst, support, ionomer)?

Water Carbon

hydrophobic

hydrophilic <
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Cost
assessment

(THIS IS WHAT TWANT ] (THIS IS WHAT T'LL PAY.

© 3/25/10 WWW.BEARTOONS.COM BEARMANCARTOONS@YAHOO.COM
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tecap.

real-time technology insights

tecap.

rea-time techackogy insights

Material Inputs and Raw Material Cost Calculations

Process flow

What it Does Features Data Sources  Applications Pricing Sign Up

tecap.

reaktme techniogy nsights

tecap.

reak-time technology insights

Visual Market Intefigence ©

‘Sensitivity analysis, S&W, 100,000 unitslyear

Total Material and Fabrication Costs

Databases

Process Visualizations

Material costs and
properties.accdb

Fab Processes &
Equipment.accdb

Fabrication Step
\ #1.Cost- FS1

High Level Process Map

Cathode Material #1
Process Total Usage -
Start CMITR
Precursor Material
Material Cost Calculation Block #1 Total Usage -
Pt PMITR
Calculation #1:
PVXCMIU/(1-SR)= |—
A = Customer - R&D
Cost Per Cell Managers
Ciliul*on Wz
CMICXxCM1U/(1-SR) | |
™1 +PMICXPMIU/(1- gl Sl
SR) = CMCPC
1 Materials Costs Matrix
Calculation #3: - Cathode Material
CMCPC x BPF = CMCPP Cost Per System
- cMCPS
1
c ion #4:
CMCPP x BSF = CMCPS Customer - Operations
e Managers |
Total Fabrication
[ Fab Costs Calculation Block | Costs Per Cel - [ Dantae )



TCM application: ES technologies

Cathode
materials

Cathode
binder

Processing cathode (mixing,
coating, drying, pressing)

Casting

Electrolyte
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Anode
materials

Anode
binder

Processing anode (mixing,
coating, drying, pressing)

Casting

Separator
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Databases

Inputs

Process

Outputs

Visualizations

Fab Processes &
Equipment.accdb

Cathode Material
#1.Cost - CM1C

Precursor Material
#1.Cost - PM1C

Cathode Material
#1 Usage - CM1U

Precursor Material
#1 Usage - PM1U

Fabrication Step
#1.Cost - FS1

Fabrication Step
#1 efficiency - FS1E

-/ Target Market #1 - ;

Performance

Specific Energy
Density - PE

High Level Process Map

Process
Start

Material Cost Calculation Block
Calculation #1:
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CM1TR
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CM1C x CM1U /(1 - SR)
+PM1C xPM1U /(1 -
SR) = CMCPC
]

Calculation #3:
CMCPC x BPF = CMCPP

¥
Calculation #4:

CMCPP x BSF = CMCPS

T
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Fab Costs Calculation Block

Calculation #1:

FS1xFS1E X PV=TFCC ||

Calculation #2:
TFCC x BPF = TFCP

]

Calculation #3:
TFCP x BSF = TFCS

T

'

Sum Costs Block

Calculation #1:
TMCPC + TFCPC = TCC
TMCPP + TFCPP = TCP
TMCPS + TFCPS = TCS

Cost vs. Perf.Calculation Block

Calculation #1:
TCC/PE=CPC
TCP / PE =CPP
TCS/PE =CPS

NNV
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Cost Model: Catalyst Layer Materials

* Conventional (ionomer, carbon based)

 3M Nanostructure Thin Film (ionomer free, non-carbon)

e Hierarchical (uniform) Nanostructure (ionomer free, non-carbon)
Pt Ioadlng level: 0.15 (0.1+0. 05) and 0.25 (0.2+0.05) mgPt/cm2

TE Y E | canne L A
Inculatine - : -

Conventional: Sputtering, role-based

* Direct application of Pt/C deposited on PEM (CCM) or GDL (GDE)
 Advantage: Easy to control, cheap

* Disadvantage: Low power density at low Pt loading

. Estlmated cost at 100,000 production rate: 8.3 S/kW (DOE)
\ \ 1r"1r':' e ._’

NSTF (3M) Whisker formation + Pt deposition + role-to-role transfer
* Deposition

 Annealing

e (Catalyst Sputtering

e Catalyst Transfer

Advantage: High Power at low Pt loading

Disadvantage: Need for continuous Pt phase (nonconductor support)
Estimated cost at 100,000 production rate: 8.7 S/kW (DTI/DOE)
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(Stack) Production Cost for Catalyst Layer Design

25|

At 100,000

Conventional 8.31 S/kW (DTI)

NSTF (3M) 8.7 $/kW (DTI)

New design (templating-UNS) 20.5 S/kW

20 -

15 A

Cost ($/kV

NSTF (3M)
10 -

—@
Conventional (DOE/DTI) @

0 | | | |
0 100000 200000 300000 400000 500000
Annual Production Rate (40 Cells Stack/year)

Source: Malek, Maine, Navessin, Eikerling,
. . . ESC Transaction, 2012 Il
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Investment &
Commercialization
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Adoption delays in science based innovation

Y

Research

-

/o 5 10 15 20

A
Y ears _—
Source: Maine and Ashby, 2000
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R&D Stages in New Materials Commercialization

Synthesis
and Characterization

Processing /

Production
Development

Specific Development
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Focus on improved functional
properties
Microstructure

Cost reduction

Retain microstructure
properties

Regulatory approval
Safety

Sources: Utterback, 1994, F. Maine, E. Maine
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Investment Methodology for Materials (IMM)

4 )

No market potential High-end market potential

High

Market

potential
diagram

Relative cost (C/C0)

Minimum requirement
market potential

o J

Low Relative performance (P/P0) High

Great market potential

Low

Sources: K. Malek, E. Maine, 2012, PICMET
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Grid-scale Storage Value Chain

Wind Photo 1‘:::_:':."-.,
Farms Voltaic AR
ME‘ T E AN
-
Generation Transmission | Distribution | iﬂ:;;j:::: 1 Residential
'ﬁ ‘ X - . 1
Bulk ed
Storage Aggregat Utility
UtllitYSCale Scale Community
Scale

Energy Storage

Interfacing with the generation sources used directly on the grid

Utility scale Consumption
centralized application Residential / commercial scale
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Capital cost estimation

o

o

o

o

High Power
= Fly Wheels
g_ Long Duration
3 Fly Wheels
' o
< 3
§ T T @ A
S & S| 5 Zinc-Air
. >3 Lead-Acid Battery
>
5% g’§ Batteries
2 E‘ c g Rechargeable
w g I'f_" <<
= 8 L i
=1 S g E
ag « o
%2 c
8 g CAES Compressed air
© Metal-Air E.C. Electrochemical
g Batteries Li-ion Lithium-ion
O Better for UPS & Power EE STl
Quality Applications , _ T
o mm Ni-Cd Nickel-cadmium
1 1
100 300 1,000 3,000 10,000

KEMA 2011 Capital Cost per Unit Power - $/kW

X . . 1+1
N IR h C | |
B ] [otionsl Researcn  Consellnational Canada




Motivation

* Increasing role of renewable sources in global electricity
market

* Intermittency of primary renewable sources is a limitation

 Enhancing asset utilization rate and reliability of power grids

* Energy storage as a versatile solution

Lithium-ion 100

Lead-acid 70
__Mickel-cadmium 27
Sodium-sulphur Flywheel 25
304

“~_Redox-flow 10

PSH 140 000
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Current grid-scale storage technologies

NO single ES technology meets all the requirements
Cost of storage: Lifetime and technology risks

Life time in practical applications (not enough data yet)
Risk of investment

Automotive: Lifetime can be increased by operating over a portion of full
charge range: 1000 cycles to 80% DoD (element energy, 2012)
Not the case for ES on grid!

Safety and standard

3-6 hrs of storage time is optimum for both bulk and distributed
When energy increased the value of ES reduced, so coupled power-
energy is needed at high energy applications

Control is important: maximizes lifetime and value

Relationships between lifetime, duty cycle, control, choice of storage
technology

Materials design, component/cell performance, durability, cost

. § . . i+l
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Valuing storage technologies

Generation Transmission Distribution

Consumption
Power quality Investment deferral Load following Power TOU cost reduction

Usage as energy Congestion relief quality

arbitrage Frequency regulation Power quality

Frequency regulation

Benefit: Pricing & load data

m = Revenue — Cost

Cost: Technical & operational data /
Capital O&M Charging
cost cost cost
i+l
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Storage data-base

Storage Abbrevi Discharge Discharge Specific Specific Energy Energy Cycle Life Cycle Life Cycle Life Cycle Life Round Trip AC Round Trip
Technology ations Duration Duration Energy Energy Density Density ak 80% DoD | at80% DoD | at 10% DoD | at 10% DoD |Energy Efficiency at|Energy Efficier
(hours) (hours) (lewhjton-metric) | (kWh/ton-metric)|  (kWhjm3) (kwh/m3) |(1,000 cycles) | (1,000 cycles) | (1,000 cycles) | (1,000 cycles) | Rated Power and | Rated Power
LO HI Lo HI LO HI LO HI LO HI 80% DoD 0% DoC
Lo HI

1 Lithitim ioe a0 e e - | E p [~V aTal il [={al (9T 20 [oTal £l [={al A0 |"1_ A00 O 0~
2} |Lithium lon - High Energy LIB-e 1 4 80 120 90 130 35000 7 50 100 0.8500 09
3 Nrbatt. (Micd, NiZn, NIMA) MNi-batt U200y ) ol g0 4U 21U 1 ) 1 ) U.ouy .o
4+ |Advanced Lead Acid LA-adv 2 5 18 30 30 70 12000 24000 20 30 0.8000 09
5 |Valve Regulated Lead Acid VRLA 2 4 18 25 30 60 0.6000 1 2 4 0.6800 0.7
& |Vanadium Redox Battery VRFE 2 5 5} 11 15 21 6 5} 160 200 0.5800 0.6
7 |Adv.Vanadium Red. Flow Batt. A-VRFB 3 B 17 21 25 30 5 3 180 200 0.6500 0.7
8 |7Zinc Bromide nBr 2 4 30 50 30 45 15000 25000 15 25 0.6200 0.7
8 |Sodium Sulfur NaS 6 7 80 140 100 170 5 G 40 50 0.7300 08
1o 2 4 150 190 2 50 0.6200 08

Sodium Mickel Chloride

NaliCl

100

Discharge duration (hours)
Specific energy (kW/Ton-metric)
Energy density (kWh/m3)

Round-Trip AC (efficiency at 80% DoD)

170

Response time to full power (s or ms)
Footprint (m2/MWh)
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NPV vs. TCO

5000

4500

4000 LA-adv

NaS

3500

LIB-e

3000

Thermal Storage (Hot)

Sodium Sulfur Na$s
Thermal Storage (Cold) Ice
Sodium Nickel Chloride aN
Valve Regulated Lead Acid  JH
Lithium lon - High Enerqgy LIB-e

Total cost of ownership in $/kW

Hybrid LA & DL-CAP

Advanced Lead Acid LA-adv

Zinc Bromide ZnBr
-6000 -5000
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70%

64 %
64 %

i

1%
59%

59%

58%
50%

000 -2000
Net Present Value (NPV) [$/kW]

-1000

0 1000
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Case-study: Li-eB System

Taxes (Refund or Paid)
Investment Tax Credit
Electricity Sales

Operating Costs

Financing Costs (Debt)
Capital Expenditure (Equity)

-
-
)
c
[
m
é
>
-
7]
[<]
o
>
o
z
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Li-eB DD, FR, SESC

$2.5M -
$2.25M -
$2M -
$1.75M - Distribution Investment Deferral
Frequency Regulation
$1.5M - B Electricity Sales
[l System Electric Supply Capacity
$1.25M B Power Reliability

Investment Tax Credit
Taxes (Refund or Paid)
$1M - B Operating Costs

Financing Costs (Debt)
Capital Expenditure (Equity)

NPV Cost vs. Benefit

$750K

$500K -

$250K -

$0 -

Cost or Benefit
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Ice NaNiCl

Score for Meeting
Application
Requirements
Score for Meeting

Location
Requirements

=100%
VRLA L LA-adv L Hybrid L LIB-e

Score for Total
Installed Cost at

. c A c A c
Selected Location
Score for L L 1
Commercial
Maturi ty A-VRFB L ZnBr L VRFB L CAES-s L
C A C A C A C A
M M M M
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“Major regulatory hurdles must be met before storage can even be
considered for use in some market......no cohesive plan exists as to how
storage technologies will be incorporated into the grid. In addition the
current system does not credit the value of storage across the entire
value chain.... The resulting challenge is the complete lack of a cost
recovery system, and with no clear path for cost reimbursement. Most
utilities have open not to invest in energy storage. It is easier for
utilities to make investment in conventional approaches to addressing
grid instability, such as natural gas spinning reserves, as these
Investments are sure to be covered by the regulatory rate base.”

Pike Research, 2009; Electricity Advisory Council
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Energy Materials: Competitive advantage

A balancing act ...
e Physical properties of materials
e Technical performance (components)

e Cost of production
(material, device, system)

e Market value
e [nvestment potential
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Conclusion

* Solving the technological challenges is not enough

* Need to reduce and manage uncertainty through
modeling and commercialization strategies

 Cost modeling helps to
- Reduce uncertainty
- Inform strategic R&D decisions
- Determine application platform
- Landscape mapping and best market opportunity
- Prioritize R&D objectives, synthesis methodologies
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