College on Multiscale Computational Modeling
of Materials for Energy Applications

Trieste, 4-15 July 2016

Training Materials

This work is licensed under an
Attribution-NonCommercial-NoDerivatives 4.0 International
Creative Commons License

http://creativecommons.org/licenses/by-nc-nd/4.0/

Copyright © 2016 Karlsruhe Institute of Technology (KIT)

http://creativecommons.org/licenses/by-nc-nd/4.0/

Training Materials 08.07.2016

Table of contents

L o (<7 0 121 5) s FO PRSP 3
Install and setup SOftWare PACKAZESccueeiiiiiieiieieeee ettt e 3
Start the databasE.......cooii ittt ettt st sttt et e bt e saaeen 3
Tutorial eNVIFONMENT SELUPeevvieriieriierierieetieieeieesteeseesteebeeseesseesseesseesssessseasseesseesseesssesssensseensees 3

N € [1 1<) v | 1<) oL OO USRS PRR 4
LaunchPad CLEANUP.covciiiiieieeieseeete ettt ettt e et e et e esseesteestaesssessseasseesseesaesssesssenssennses 4
Create @ WOTKIIOWeeiiiieiee ettt ettt ettt sttt s et et e et e et e et eneete e st enteeteeneenneeneenes 4
Add a workflow to LaunchPad...........ccoooiiiiiiiii e 4
Query FireWorks on the LaunchPadcccooviiiiiiiiiiieciecicce ettt ens 4
Launch FITEWOTKScoiuiiiiiie ettt et ettt ettt et et e bt sat e s st e sateeaeeeneeas 4

3 EXErcise 1: SINGIETaSKccuiiciiiiiiiieiiece ettt ta e s b e s b e esbeessaesraessneseneans 5

4 EXercise 2: FOreachTask.......cccoiiiiiiiiieiee ettt st 6

5 Exercise 3: Charge transfer in dimerscoceeiieiierienienieee ettt sttt e s e saeesnne s 7
Make the WOTKIIOW TUIN FASTETeiuiiiiiieieiiee ettt sttt et b e e 7

6 Exercise 4: Charge transport in disordered StrUCTUIESeoeeveeriirienienirienentee et 8
Task 1: Sequential WOTKIIOWcocoiiiiiiiiiiii ettt st 8
Task 2: Parallel WOTKIIOWcooiuiiiiiii ettt st 8
Make the WOTKEIOW TUN FASLEToevieiieiieeie ettt ettt sttt eeeeneees 9

7 Exercise 5: Extending an eXisting WOrKflOWcccveviiriiiiiiiiieiieieeeesee et 9

I ¥ 1§ (< SRR 10

College on Multiscale Computational Modeling, 4-15 July 2016

Page 2 of 10

Training Materials 08.07.2016

1 Preparation

Install and setup software packages

The packages ‘mongodb’ and ‘nwchem’ are already installed and configured on the machines.
Install Python 2.7 (anaconda):

mkdir -p /scratch/$USER

cd /scratch/$USER

tar xzf /scratch/smr2874/kondov-tutorial-2.tgz Anaconda2-4.0.0-Linux-x86_64.sh
bash Anaconda2-4.0.0-Linux-x86_64.sh

(install directory: /scratch/<username>/anaconda2)

export PATH="/scratch/$USER/anaconda2/bin:$PATH"

In -s /scratch/$USER ~/fw-tutorial

cd ~/fw-tutorial

tar xzf /home/nfs3/smr2874/ictp-tutorial-fireworks.tgz

Install python packages: ase, fireworks, python-igraph, pjson:

pip install --upgrade pip

pip install ase

pip install fireworks

pip install python-igraph

pip install pjson

pip install pyaml

Start the database

You should skip this step if mongod is running. Otherwise there might be an address conflict. Open a
new terminal and enter the following commands:

cd ~/mongodb
export PATH=$PWD/bin:$PATH
export MONGO_DBPATH=$PWD/data/db

mongod --dbpath=$MONGO_DBPATH

Tutorial environment setup

Open a new terminal and enter the following commands:

College on Multiscale Computational Modeling, 4-15 July 2016
Page 3 of 10

Training Materials 08.07.2016

cd ~/fw-tutorial/ictp-tutorial-fireworks
export PATH="/scratch/$USER/anaconda2/bin:$PATH"

export PYTHONPATH=$HOME/fw-tutorial/ictp-tutorial-fireworks/1lib:$PYTHONPATH

2 General steps

LaunchPad cleanup

When used productively the LaunchPad contains many workflows in different states. To distinguish
between different workflows, the query commands have to specify the firework ID or workflow ID of
the relevant workflow on the LaunchPad. At the beginning of each exercise in this tutorial we will
clean up the launch pad from previous fireworks so that we do not have to use IDs to execute and que-
ry. To clean up all workflows on the LaunchPad this command can be used:

lpad reset

Create a workflow

python singletask.py

pjson < workflow.json

more workflow.yaml

Add a workflow to LaunchPad

To add a workflow to the LaunchPad:

lpad add workflow.yaml

Alternatively in JSON format:

lpad add workflow.json

Query FireWorks on the LaunchPad
To query fireworks available on the LaunchPad:
lpad get_fws

lpad get_fws -d all

To query workflows available on the LaunchPad:

lpad get_wflows -d all

Launch FireWorks

In the FireWorks framework workflows are executed by “launching rockets”. Either one FireWork is
processed at a time using the rlaunch command, or multiple FireWorks can be processed with the
mlaunch command. The rlaunch command has two modes of operation: singleshot and rapidfire. The
command

College on Multiscale Computational Modeling, 4-15 July 2016
Page 4 of 10

Training Materials 08.07.2016

rlaunch singleshot
will execute one FireWork on the LaunchPad which has “READY” state and exit. The command
rlaunch rapidfire

will run all FireWorks in “READY” state in a sequence. Please note that if a FireWork changes its
state to “READY” after all dependencies are completed. This means that a linear workflow with
downstream dependencies will be executed completely in one call of this command. To suppress ver-
bose information on the screen the “-s” flag can be added:

rlaunch -s rapidfire

3 Exercise 1: SingleTask

The purpose of this custom-made FireTask is to call a Python function ‘function’ passing the data
objects listed in ‘args’ as positional argument and to store the returned objects under the name or
names listed in ‘output’ in the specs of all children FireWorks using FWAction. All names in ‘args’
must be available in the spec of the current FireWork. The names of the Python module and function
must be found in SPYTHONPATH. Changes of objects passed will be stored in the current but not in
next FireWork. The SingleTask argument ‘function’ is mandatory, the ‘args’ and ‘output’ arguments
are optional.

The example demonstrates the use of SingleTask and ScriptTask and how data can be passed from one
FireWork to another within a very simple workflow. To create the workflow change to the example
directory:

cd exercises/exercise_1

cp ../demos/singletask_demo.py .
and run the Python script

python singletask_demo.py

Then inspect the created workflow in the file singletask_demo.yaml. The Python script automatical-
ly resets the LaunchPad and adds the workflow to it. You can query the workflow with

lpad get_fws -d all
Then execute the first FireWork with
rlaunch -s singleshot

You will see the data element printed on the screen. If you query the FireWork with ID=1, i.e. the
second FireWork in the workflow

lpad get_fws -i 1 -d all

you will find that its status has changed to “READY” and that ‘outputs’ contains the data passed from
the previous FireWork. Now execute the second FireWork:

rlaunch -s singleshot

College on Multiscale Computational Modeling, 4-15 July 2016
Page 5 of 10

Training Materials 08.07.2016

Please note how the two FireTasks of the second FireWork were executed one after another “in one
shot”.

4 Exercise 2: ForeachTask

The purpose of ForeachTask is to dynamically branch the workflow between this FireTask and its
children inserting dynamically a parallel section of children FireWorks using FWAction detour. The
number of the parallel FireWorks is determined by the length of the list specified by the ‘split’
ForeachTask argument. Each child FireWork contains a SingleTask which processes one element from
this list. The return value is passed to the spec of the FireWork after the detour using a push method,
i.e. the values of all parallel SingleTasks are collected in a list named by the ‘output’ argument. How-
ever, the ordering of items in the resulting ‘output’ list can be different from that in the original ‘split’®
list.

Change to the directory exercise_2 and create the workflow using the Python script:
cp ../demos/foreachtask_demo.py .
python foreachtask_demo.py

The python script dumps the workflow definition to JSON and YAML files and adds the workflow to
the launch pad. Now open the file foreachtask_demo.yaml with a text editor to see the workflow
definition and make a query on the LaunchPad:

lpad get_fws

The first FireWork is in “READY™ state and the second one is in “WAITING” state. Now execute the
first FireWork with the command:

rlaunch -s singleshot
lpad get_fws

Now we see that the first FireWork is in “COMPLETED?” state and that the workflow has been ex-
tended with three additional FireWorks in “READY™ state: one for each element in ‘array’. Now start
all these Fireworks:

mlaunch -s --nlaunches 1 3
lpad get_fws -i 1 -d all

The query shows that the last FireWork has the results from the three parent FireWorks which were
inserted by the first FireWork. These results are in the data element ‘new array’. Now execute this last
FireWork which will print the reassembled list on the screen:

rlaunch -s singleshot

Note the possibly different ordering of the elements in ‘new array’ compared to ‘array’.

College on Multiscale Computational Modeling, 4-15 July 2016
Page 6 of 10

Training Materials 08.07.2016

5 Exercise 3: Charge transfer in dimers

The goal is to create a sequential workflow to calculate the charge transfer rates in dimers with given
pre-optimized structures. For this purpose use a template in the directory problems:

cd exercise_3
cp ../problems/ct_workflow_seq.py dimer_workflow_seq.py
gedit dimer_workflow_seq.py

If you do not feel comfortable with Python you can chose to edit a JSON or YAML description of the
workflow. For this copy and edit the solution templates:

cp ../problems/ct_workflow_seq.json dimer_workflow_seq.json
gedit dimer_workflow_seq.json

Remove the unnecessary FireWorks and fill in the names of the relevant python functions. The rele-
vant python functions are collected in the file ../../1ib/fw_task_functions_seq.py. The simula-
tion parameters and the dimer structures are available in the directory ../inputs. A solution work-
flow in Python, JSON and YAML formats is available in directory ../solutions. Before adding the
workflow to the LaunchPad make sure to change the key ‘monomer file’ to ‘morphology file’ add the
key ‘morphology file’ to parameters.json. Also make sure to set a correct “src” path for the upload of
the dimer structure. You should set it to the path to your exercise 3 directory. You can find this path
by running the “pwd” command. After this reset the LaunchPad and add the workflow. Run simula-
tions for different dimers: formic acid, benzene, uracil, alq3, for holes and electrons changing the input
parameters in the parameter file.

Make the workflow run faster

Adding the key "reorganization energy" will make the workflow skip the computing of the reorganiza-
tion energy. This will reduce the total computing time, especially for benzene, uracil and alg3. You
can use the following values for the reorganization energy:

M onomer Reor ganization energy, eV
Benzene 0.510

Uracil 1.29

Alg3 0.157

In addition, you can run the DFT code in parallel and speedup every DFT calculation. To run
NWChem on 4 processor cores, you should add the “command” keyword:

"command": "mpirun -np 4 nwchem PREFIX.nw > PREFIX.out" (inJSON)

command: mpirun -np 4 nwchem PREFIX.nw > PREFIX.out (in YAML)

College on Multiscale Computational Modeling, 4-15 July 2016
Page 7 of 10

Training Materials 08.07.2016

6 Exercise 4: Charge transport in disordered structures

The goal of this exercise is to create a workflow to simulate charge mobility in a disordered material
consisting of small organic monomers.

Task 1: Sequential workflow

As first task create a sequential workflow by editing a template:
cd exercise_ 4

cp ../problems/ct_workflow_seq.py .

gedit ct_workflow_seq.py

If you do not feel comfortable with Python you can chose to edit a JSON or YAML description of the
workflow. For this copy and edit the solution templates:

cp ../problems/ct_workflow_seq.json .
gedit ct_workflow_seq.json
Again fill in the names of the relevant functions (see previous exercise).

An alternative, more involved method: An alternative way to solution is to reuse the solution of Exer-
cise 3 (for JSON and YAML simply substitute .py with .json and .yaml respectively):

cp ../solutions/dimer_workflow_seq.py ct_workflow_seq.py
gedit ct_workflow_seq.py
Then add the two missing FireWorks (compare the workflow graphs to find which).

After the sequential workflow is ready, add it to the LaunchPad and perform a simulation for formic
acid.

Task 2: Parallel workflow

The dataflow structure of the sequential workflow is very simple and the workflow seems to be suffi-
cient for a dimer simulation. However, for disordered systems with many molecules one might take
advantage of the fact that the numerous DFT calculations of the site energies and the electronic cou-
plings are independent and can be performed concurrently. Also the evaluation of the reorganization
energy can be done at any time of the simulation after the preparation and before the analysis step.

The goal of this task is to create a parallel workflow that exploits these two types of concurrency.
cp ../problems/ct_workflow_par.py .

gedit ct_workflow_par.py

For JSON/YAML you have to only substitute .py with .json or .yaml respectively.

The task can be solved by completing the ‘args’, ‘split” and ‘output’ tags of the SingleTasks and
ForeachTasks. For this you have to study the dataflow graph of the parallel charge transport workflow.
An alternative solution is to look at the interfaces of the relevant python functions under

College on Multiscale Computational Modeling, 4-15 July 2016
Page 8 of 10

Training Materials 08.07.2016

../../lib/fw_task_functions_par.py. The solution of this task can be found in the directory
../solutions. After you have composed the workflow perform simulations for benzene and alq3.

Make the workflow run faster

The command “rlaunch” will run the FireWorks one by one. If you have more resources on the ma-
chine you can process multiple FireWorks at a time. The “mlaunch” command:

mlaunch --sleep 5 --nlaunches infinite 4

will start four workers in parallel which will process all FireWorks in “READY” state on the
LaunchPad. After a FireWork is finished the worker waits 5 seconds until checking out the next
FireWork.

7 Exercise 5: Extending an existing workflow

A workflow in any state (for example: ready, running or completed) can be extended with a single
FireWork or with another workflow. This is especially useful if some data (intermediate, final) must
be further processed (for example another simulation with the same model but other parameters, or in
another model), analyzed, visualized and /or downloaded. Let us repeat the last analysis step of the
charge transport workflow and download the generated files (visualization and topological analysis of
the morphology, the morphology itself in xyz format, the radial distribution function etc.).

Identify the name of the FireWork after which the new (short) workflow has to be appended and put it
in the FireWork ID query in the template solution:

cd exercise_ 5

cp ../problems/ct_workflow_++.py .
gedit ct_workflow_++.py

python ct_workflow_ ++.py

Running the python script will append the workflow to the target workflow on the LaunchPad. After
this, check the state and execute the workflow. Find the archived files with the results in the current
working directory. Unpack then using the program unzip and view the results using a web browser
and a graphics viewer (such as okular or eog).

College on Multiscale Computational Modeling, 4-15 July 2016
Page 9 of 10

Training Materials 08.07.2016

8 Figures
Reorgani-
P_repatre Find pairs zation
inpu energy

Site
energies

Electronic
couplings

Figure 1: Sequential workflow for dimer simulation

Generate
morphology

Prepare
input

Optimize
geometry

Reorgani- Site
zation Find pairs sneTifes
energy

Electronic
Analyses -Q—D couplings

Figure 2: Parallel workflow for organic electronics simulation. The links for the
‘parameters’ data entity are not shown for the sake of clarity.

College on Multiscale Computational Modeling, 4-15 July 2016
Page 10 of 10

