

College on Multiscale Computational Modeling of Materials for Energy Applications 4 - 15 July 2016

Co-sponsors: INRS Canada, ESF and Psi-k

Combining High-throughput and Spacegroup Techniques to Understand the Microscopic Behaviour of Materials

Giovanni PIZZI

Theory and Simulation of Materials (THEOS), and National Center for Computational Design and Discovery of Novel Materials (MARVEL), EPFL, Switzerland

Abstract:

Even if ferroelectric materials like BaTiO₃ or KNbO₃ have been used for decades in a broad range of technological applications, there is still significant debate in the literature concerning their microscopic behavior. For instance, many perovskite materials display a high-temperature cubic phase with zero net polarization, but its microscopic nature is though still unclear, with some materials displaying a very complex energy landscape with multiple local minima. In order to investigate and clarify the microscopic nature of oxide perovskites, we perform a study on a set of about 50 representative ABO₃ systems. We use spacegroup techniques to systematically analyze all possible local displacement patterns that are compatible with a net paraelectric phase, but can provide local non-zero ferroelectric moments. The energetics and the stability of these patterns is then assessed by combining the spacegroup analysis with DFT calculations in a high-throughput fashion, using AiiDA. I will show how we have been able to describe the different classes of microscopic models underlying the perovskite systems using this combined technique. I will also discuss additional examples from my research, where similar approaches can be adopted for the prediction of the properties of other material systems.