Oil recovery and mitigation processes: insights from multiscale molecular simulations

Caetano R. Miranda

Dept. of Materials Physics and Mechanics Institute of Physics University of Sao Paulo (USP) São Paulo - Brazil *cmiranda@if.usp.br*

Outline

- 1. Nano and O&G industry
- 2. Multiscale molecular simulations
- 3. NANO-EOR surface driven flow
- 4. NANO-IOR pressure driven flow
- 5. Nanoaggregation of complex molecules
- 6. Concluding Remarks

Motivation

- The current average recovery factor from conventional oil reservoirs is ~35%.
- Poor sweep effect in the reservoir & capillary forces
- Would it be possible to reach 70% recovery factor in conventional oil fields?
- As oil recovery processes involve the interaction between mineral and hydrocarbons, the optimization of oil production requires deep understanding of reservoir properties at different scales.

Crossing scales in Oil & Gas

Complex physical phenomena in Materials Oil&Gas: How the large can drive small systems ?

Temperature, Pressure, Salinity, Heterogenous and multiphase media

IOR & EOR

- Improved and Enhanced Oil Recovery (IOR and EOR) techniques are currently of great strategic importance to improve oil wells production.
 - Water/brine
 - CO₂
 - N₂
 - Surfactants
 - Thermal
 - Bio

The main strategy is to reduce the interfacial tension (IFT) or the viscosity of crude oil by molecular additives, which can be adsorbed on the oil-fluid interface, or migrate to the crude oil through the interface.

H2O + SiO2 nanoparticle

Complex physical phenomena in Materials and O&G industry from a Nanoscience perspective

NANO-EOR - Surface driven flow: NPs at interfaces brine-oil-rock over scales

ASPHALTENES Aggregation of complex matter

NANO-IOR – Pressure driven flow Fluid confinament,multiphasic fluids Flow in NANO porous media

The health of oil reservoirs

How to control interfaces and flow at nanoscale ?

To favor the mobilisation of hydrocarbons trapped at the pore scale through short range surface forces or capillarity:

- Nano-EOR control the chemical environment: by functionalized NPs and surfactants "Wetability modifiers" – SURFACE DRIVEN FLOW
- 2) Nano-IOR control confinement Fluid flooding in nanoporous. *PRESSURE DRIVEN FLOW*
- 3) Low salinity EOR control the electrostatic environment –"Smart water" ELETROKINETIC DRIVEN FLOW

SIMULATIONS (COMPLEX SYSTEMS AND CONTROLED CONDITIONS OVER SCALES)

MULTISCALE MOLECULAR SIMULATIONS

Multiscale in the laws of Physics

Multiscale computational approach

MD ab initio and classical X LBM: a soccer perspective

- Tactical formation or random
- Collisions
- Interactions between players result in a goal

Classical MD

Ab initio MD

foosball Simple way to describe the movement of players during a game

Multi-scale approach

& experimental comparison

Recent developments (~00s ~10s):

DFT:

- Dispersion corrections (vdW)
- GIPAW (Gauge Including **Projector Augmented Waves**)

MD:

- Development of polarazible dissociative ab initio based interatomic potentials.
- Massive paralelization
- New hardware (GPUs and hard-disks)

LBM:

- Free energy approach
- Viscosity differences
- Multi-phase systems
- Pore-scale flow in porous media

NANO-EOR AN INTEGRATED WAY TO APPROACH THE PROBLEM

NANO-EOR SURFACE DRIVEN FLOW

Functionalized Silica nanoparticles

Hydroxylated
 Poliethylene glycol (Hydrophylic)
 -CH₂-CH₂-Sulfonic acid (Hydrophobic)

Temperature (300, 350, 375 and 400K) Pressure (1to 400 atm) [1 – 6000 psi]

Miranda et al. SPE-157033-MS - 2012

Miranda et al., J. Phys. Chem. C, 120, 6787, (2016) Miranda et al., J. Phys.: Condens. Matter 27 325101 (2015) Miranda et al.,Eur. Phys. J. B 88,261 (2015) Miranda et al.,Applied Surface Science, 292,742 (2014).

NP-clay interaction

- For *montmorillonite (MMT)* and other clay systems, the effect of clay swelling occurs, which can have an impact on the wellbore instability and formation damage.
- Montmorillonite is used in the oil drilling industry as a component of drilling mud.

 $(Na,Ca)_{0.33}(AI,Mg)_2(Si_4O_{10})(OH)_2 \cdot nH_2O_1$ MMT is naturally hydrophilic and it has good affinity with H₂O_1

AFM Simulations through the Interaction between Functionalized Silicon Tip and the Montmorillonite (001) Surface – DFT + vdW

Alvim and Miranda, J. Phys. Chem. C, 120, 13503(2016) Alvim and Miranda, Phys. Chem. Chem. Phys., 17, 4952 (2015)

- Strength of bonding
- Surface configuration
- Adsorption density
- Interatomic Forces
- Chemical environment

HOW TO UPSCALE THIS VERY FUNDAMENTAL INFORMATION ?

Fully atomistic MD(Brine+NP/Oil/MMT)

Electrical double layer

- Electrical Double Layer (EDL) Formation.
- For NP adsorbed on MMT compression of the EDL.

Interfacial phenomena

MD Physical properties $\rho_o = 0.81 \text{ g/cm}^3$; $\rho_b = 0.96 \text{ g/cm}^3$; $\eta_o = 3.62 \text{ mPa-s}$; $\eta_b = 0.79 \text{ mPa-s}$; $\gamma_{ob} = 43 \text{ mN/m}$; $\theta_w = 28^\circ$

 $ρ_o=0.81 \text{ g/cm}^3; ρ_b=0.96 \text{ g/cm}^3;$ $η_o=3.60 \text{ mPa-s}; η_b=0.88 \text{ mPa-s};$ $γ_{ob}=38 \text{ mN/m}; θ_w=21^\circ$

LBM parameters: $G = 0.14; G_w = -0.015;$ $\tau_{oil} = 1.50; \tau_{brine} = 0.70$

 $G = 0.15; G_w = -0.02;$ $\tau_{oil} = 1.50; \tau_{brine} = 0.75$

Hierarchical Computational Protocol: Molecular Dynamics + LBM

Versatile tool to investigate the potentialities of modified injection fluids for EOR techniques

Pereira, Lara and Miranda, Microfluidics and Nanofluidics 2, 20 (2016)

MMT Rock Model

LBM Parameters

	G ₁₂	G _w
Without NP	0.190	0.078
NP-H	0.181	0.095
NP-SA	0.171	0.099
NP-PEG2	0.164	0.098

Characteristic Scale $I_0 = 5.49 \times 10^{-5} \text{ m}$ $t_0 = 1.27 \times 10^{-4} \text{ s}$ $m_0 = 1.50 \times 10^{-10} \text{ kg}$

Exploring Oil Extraction by Nanofluids in Clay Coated Pore Network Models

Oil displacement by Brine+NP-PEG2: First Injection

$$C_a = 1.2 \times 10^{-2}$$

Exploring Oil Extraction by Nanofluids in Clay Coated Pore Network Models

LBM Simulations: Oil displacement at the pore-size scale

Core-shell NP combinatorial exploration for EOR applications (on going)

Summary – NanoEOR for NPs/brine/oil/clay interfaces

- Surface characterization of Geological Materials by first principles (PDOS, AFM, XAS and NMR).
- Extensive MD for NP interacting with Clays/brine/oil.
- Adsorption and Swelling studies of NP on clay systems.
- ✓ Integrated FP, MD and LBM method.
- Cost effective way to search for NPs for EOR applications.

NANO-IOR *PRESSURE DRIVEN FLOW WHERE THE CONTINUUM APPROACH MAY FAIL*

NANO-IOR PRESSURE DRIVEN FLOW

- Explore the water and oil flow through silica nanopores to:
- a) Model the displacement of water and oil through a nanopore to mimic the fluid infiltration on geological porous media.
- b) Simulate the process of water fooding to emulate a Nano-IOR process.

Fluid flow through nanoporous

Fluid flow through mineral porous occours in underground aquifers, oil and shale gas reservoirs.

Clay Minerals (1994) 29, 451-461

- "Invisible pores"
- Large % of porosity and surface area.
- Interconnects larger porous
- Control the permeability

Fluids confined at nanoporous

- Under confinement, new phenomena can emerge, as *new phase transitions* and *layering near the interface.*
- At nanoscale, the continuum models for fluids may not work.
- Use of an atomistic description is needed.

SILICATES AND CARBONATES

Methodology

- Classical molecular dynamics (MD) simulations (LAMMPS) (over 10 ns)
- Well tested interatomic potentials : Cruz-Chu (Silica), CHARMM (hydrocarbons) and SPCE/FH (water) with the Lorentz-Berthelot combining rules
- Realistic conditions of oil reservoirs (300 K and 200 atm)
- Multicomponent oil (light oil with alcanes and aromatic molecules)
- Induced flow process by applying an external force applied to the atoms (mimic a *pressure gradient*)

- Would fluids infiltrate in nanoporous media (Silica) ?
- How much oil is in nanoporous ?
- At which conditions will oil infiltrate ?
- How do extract the oil ? Nano IOR

Nano IOR - Fluid infiltration in silicate nanoporous through MD

Do water and oil infiltrate on silica nanoporous ?

Empty nanopores (4nm) with water or oil adjacent reservoirs were simulated.

Both water and oil inltrated quickly (less than 1 ns) on the nanopores.

Model I - Water and oil filling in nanoporous silicates – (without previous contact with water)

Water flooding - 4nm (hydrophilic)

• Oil filled pore, with no water monolayer.

Up to 2500 atm :

No water infiltration.

Just a few molecules enter the nanopore.

Almeida & Miranda, Scientific Reports 6:28128 (2016)

Model II (with previous contact with water) Oil displaces water. (geological formation)

Oil infiltration observed only for pressures above 600 atm.

- For 4nm porous, oil infiltrates above 600 atm.
- For 1000 and 1500 atm, a dripping effect at the exit end of the nanochannel is observed.
- For 2500 atm, a steady flux with no dripping occours.

Can we take it out ?

Nano IOR – Oil filling in nanoporous silicates Model II (with previous contact with water)

Water flowing back 4nm hydrophilic, 2500 atm.

Water infiltration observed for pressures as low as 10 atm.

Key questions

- Would fluids infiltrate in nanoporous media (Silica) ?
- YES no barrier
- How much oil is in nanoporous ?
- Considerable, with water thin film adsorbed
- At which conditions will oil infiltrate ?
 Above 600 atm
- How do extract the oil ? Nano IOR YES, only if water is adsorbed.

Almeida & Miranda, Scientific Reports 6:28128 (2016)

Summary - Nano-IOR in nanoporous silicates

- Modeling of nanoporous silicates (hydrophobic to hydrophilic) from 1 to 4 nm.
- MD simulations used to determine the wettability and contact angle between injected fluids (brine and CO2) with light oil (not shown).
- Plethora of dynamics in nanoporous media observed (Cavitation, bubble formation, fluid flow)

NANOAGGREGATION OF COMPLEX MOLECULES ASPHALTENES WHERE MD IS NOT ENOUGH

"Asphaltenes: the petroleum cholesterol"

- Asphaltenes are the most polar and surface-active fraction of the oil that is insoluble in n-alkanes, but soluble in aromatic solvents.
- They can precipitate, aggregate and deposit on wells, formations, pipelines and surface facilities
- They play a key role in the Oil industry chain from oil E&P to refining processes

Asphaltene and resin interactions

- Tendency to nanoaggragate, clustering and adsorb at solid surfaces
- Very rich and complex chemistry

Adams, J. J., *Energy & Fuels*, 2014, 28, 2831-2856.

Summary - nanoaggregation

- The proposed nanoaggregation mechanism is based on the competition of the π- orbitals, leading to degeneracy broken of the electronic states with an increasing of the displacement of the HOMO orbital towards the center of the nanoaggregate.
- The growth of the nanoaggregate is further limited given their charge rearrangement, which leads to a dipole moment decreasing.
- These findings can guide new methods for asphaltene stability control.

Team @ NanoPetro

- Caetano R. Miranda (PI)
- Oscar Samuel (Pos-doc)
- Polina Tereshchuk(Pos-doc)

Raphael Alvim (Pos-doc)

- Alexsandro Kirch (PhD)
- Oscar Perez (PhD)
- Robinson Alvarez (PhD)
- Vladvostok Franz (PhD)
- Sylvia Mutisya(PhD)
- Yuri Cevaschi (PhD)
- Undergrad students: Bruna Minelli Martines(USP) Miguel Alves de Jesus (USP) Sydney Hashimoto Oku (USP)

Former members:

- Mateus Michelon (Petrobras)
- Ronaldo Giro (IBM)
- Marcos V. Alves (UFF-BR)
- Vagner A. Rigo (UTFPR-BR)
- Corine Arrouvel (UFSCAR-BR)
- James Almeida (EPFL)
- Verônica Sanchez (CONICET-AR)
- Lucas S. de Lara (UEPG-BR)
- Aline O. Pereira (Pos-doc UFABC)
- Rochele Bevilaqua (Unifra-BR)
- Javier Mamani (Master)
- Heitor Capuani (in some pub in Dublin)
- Filipe Dalmatti (IFSP-BR)

Acknowledgements

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Research Group at the Universidade Federal do ABC

Additional information: cmiranda@if.usp.br

